Citation: LU Peng, LU Wei-zhe, LI Huan, CHEN Yin-fei, ZHANG Ze-kai. Preparation of CeWTiOx catalysts via self-propagating high temperature synthesis and its NH3-SCR performance[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(8): 986-992. shu

Preparation of CeWTiOx catalysts via self-propagating high temperature synthesis and its NH3-SCR performance

  • Corresponding author: ZHANG Ze-kai, zzk@zjut.edu.cn
  • Received Date: 20 February 2017
    Revised Date: 26 April 2017

Figures(7)

  • A series of CeWTiOx catalysts were prepared by self-propagating high-temperature synthesis method, and their NH3-SCR activities were evaluated. X-ray diffraction, N2 adsorption-desorption, H2-temperature-programmed reduction, X-ray photoelectron spectroscopy and NH3-temperature-programmed desorption were performed to investigate the relationship between the catalyst activity and its physicochemical properties such as crystalline phase, specific surface area, redox ability and acidity. The results showed that 80% of NO conversion could be reached on the Ce40W10TiOx catalyst sample in a range of 150-430 ℃. NO conversion of Ce40W10TiOx could be kept above 97% in SO2 atmosphere. The characterization indicated that the excellent low temperature activity and SO2 resistance of Ce40W10TiOx were mainly associated with the tungsten doping. The existence of tungsten weakened the strength of Ce-O bond, lowered the crystallinity and crystal size of CeO2, increased the surface active oxygen content and the acid sites, thus improved the NH3-SCR performance of the catalyst.
  • 加载中
    1. [1]

      LIU Xin, NING Ping, LI Hao, SONG Zhong-xian, WANG Yan-cai, ZHANG Jin-hui, TANG Xiao-su, WANG Ming-zhi, ZHANG Qiu-lin. Probing NH3-SCR catalytic activity and SO2 resistance over aqueous -phase synthesized Ce-W@TiO2 catalyst[J]. J Fuel Chem Technol, 2016,44(2):225-231.  

    2. [2]

      HECK R M. Catalytic abatement of nitrogen oxides-stationary application[J]. Catal Today, 1999,53(4):519-523. doi: 10.1016/S0920-5861(99)00139-X

    3. [3]

      BUSCA G, LIETTE L, RAMIS G, BERTI F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review[J]. Appl Catal B: Environ, 1998,18(1/2):1-36.  

    4. [4]

      GRANGER P, PARVULESCU V I. Catalytic NOx Abatement Systems for Mobile Sources: From Three-Way to Lean Burn after-Treatment Technologies[J]. Chem Rev, 2011,111:3155-3207. doi: 10.1021/cr100168g

    5. [5]

      ALEMANY L J, BERTI F, BUSCA G, RAMIS G, ROBBA D, TOLEDO G P, TROMBETTA M. Characterization and composition of commercial V2O5-WO3-TiO2 SCR catalysts[J]. Appl Catal B: Environ, 1996,10(4):299-311. doi: 10.1016/S0926-3373(96)00032-X

    6. [6]

      YATES M, MARTIN J A, LUENGO M A M, SUAREZ S, BLANCO J. N2O formation in the ammonia oxidation and in the SCR process with V2O5-WO3 catalysts[J]. Catal Today, 2005,107/108:120-125. doi: 10.1016/j.cattod.2005.07.015

    7. [7]

      CHEN L, LI J H, Ge M F. Promotional effect of Ce-doped V2O5-WO3/TiO2 with low vanadium loadings for selective catalytic reduction of NOx by NH3[J]. J Phys Chem C, 2009,113(50):21177-21184. doi: 10.1021/jp907109e

    8. [8]

      GAO X, JIANG Y, ZHONG Y, LUO Z Y, CEN K F. The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3[J]. J Hazard Mater, 2010,174(1):734-739.  

    9. [9]

      PENG Y, LI K Z, LI J H. Identification of the active sites on CeO2-WO3 catalysts for SCR of NOx with NH3: An in situ IR and Raman spectroscopy study[J]. Appl Catal B: Environ, 2013,140/141:483-492. doi: 10.1016/j.apcatb.2013.04.043

    10. [10]

      REDDY B M, KHAN A, YAMADA Y, KOBAYASHI T, LORIDANT S, VOLTA J C. Structural characterization of CeO2-TiO2 and V2O5/CeO2-TiO2 catalysts by raman and XPS techniques[J]. J Phys Chem B, 2003,107(22):5162-5167. doi: 10.1021/jp0344601

    11. [11]

      QI G, YANG R T. A superior catalyst for low-temperature NO reduction with NH3[J]. Chem Commun, 2003,34(26):848-849.  

    12. [12]

      KWON D W, NAM K B, HONG S C. The role of ceria on the activity and SO2 resistance of catalysts for the selective catalytic reduction of NOx by NH3[J]. Appl Catal B: Environ, 2014,166/167(1):37-44.  

    13. [13]

      ZHANG S L, ZHONG Q. Promotional effect of WO3 on O2- over V2O5/TiO2 catalyst for selective catalytic reduction of NO with NH3[J]. J Mole CatalA, 2013,373(3):108-113.  

    14. [14]

      LIU Z M, LIU Y X, LI Y, SU H, MA L L. WO3 promoted Mn-Zr mixed oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. Chem Eng J, 2016,283:1044-1050. doi: 10.1016/j.cej.2015.08.040

    15. [15]

      CHEN L, WENG D, SI Z C, WU X D. Synergistic effect between ceria and tungsten oxide on WO3-CeO2-TiO2 catalysts for NH3-SCR reaction[J]. Prog Nat Sci-Mater, 2012,22(4):265-72. doi: 10.1016/j.pnsc.2012.07.004

    16. [16]

      KWON D W, HONG S C. Promotional effect of tungsten-doped CeO2/TiO2 for selective catalytic reduction of NOx with ammonia[J]. Appl Surf Sci, 2015,356:181-190. doi: 10.1016/j.apsusc.2015.08.073

    17. [17]

      KONG Z J, WANG C, DING Z N, CHEN Y F, ZHANG Z K. Enhanced activity of MnxW0.05Ti0.95-xO2-δ for selective catalytic reduction of NOx with ammonia by self-propagating high-temperature synthesis[J]. Catal Commun, 2015,64:27-31. doi: 10.1016/j.catcom.2015.01.028

    18. [18]

      SHAN W P, LIU F D, HE H, SHI X Y, ZHANG C B. A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. Appl Catal B: Environ, 2012,115/116(4):100-106.  

    19. [19]

      LIU F D, SHAN W P, LIAN Z H, XIE L J, YANG W W, HE H. Novel MnWO catalyst with remarkable performance for low temperature NH3-SCR of NOx[J]. Catal Sci Technol, 2013,3(10):2699-2707. doi: 10.1039/c3cy00326d

    20. [20]

      Z R MA, WENG D, WU X D, SI Z C. Effects of WOx modification on the activity, adsorption and redox properties of CeO2 catalyst for NOx reduction with ammonia[J]. J Environ Sci-China, 2012,24(7):1305-1316. doi: 10.1016/S1001-0742(11)60925-X

    21. [21]

      SHAN W P, LIU F D, HE H, SHI X, ZHANG C. Novel cerium-tungsten mixed oxide catalyst for the selective catalyticreduction of NOx with NH3[J]. Chem Commun, 2011,47(28):8046-8048. doi: 10.1039/c1cc12168e

    22. [22]

      WANG C Z, YANG S J, CHANG H Z, PENG Y, LI J H. Dispersion of tungsten oxide on SCR performance of V2O5-WO3/TiO2: Acidity, surface species and catalytic activity[J]. ChemEng J, 2013,225(6):520-527.  

    23. [23]

      JIANG Y, XING Z M, WANG X C, HUANG S B, WANG X W, LIU Q Y. Activity and characterization of a Ce-W-Ti oxide catalyst prepared by a single step sol-gel method for selective catalytic reduction of NO with NH3[J]. Fuel, 2015,151:124-129. doi: 10.1016/j.fuel.2015.01.061

    24. [24]

      GAO X, JIANG Y, FU Y C, ZHONG Y, LUO Z Y, CEN K F. Preparation and characterization of CeO2/TiO2 catalysts for selective catalytic reduction of NO with NH3[J]. Catal Commun, 2010,11(5):465-469. doi: 10.1016/j.catcom.2009.11.024

    25. [25]

      ZHANG Q L, XU L S, NING P, GU J J, GUAN Q Q. Surface characterization of CuO-CeO2-ZrO2 catalysts for selective catalytic reduction of NO with NH3[J]. Appl Surf Sci, 2014,317:955-961. doi: 10.1016/j.apsusc.2014.09.017

    26. [26]

      QI G, YANG R T, CHANG R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures[J]. Appl Catal B: Environ, 2004,51:93-106. doi: 10.1016/j.apcatb.2004.01.023

    27. [27]

      XU W, HE H, YU Y. Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3[J]. J Phys Chem C, 2009,113(11):4426-4432. doi: 10.1021/jp8088148

    28. [28]

      YANG S J, GUO Y F, CHANG H Z, MA L, PENG Y, QU Z, YAN N Q, WANG C Z, LI J H. Novel effect of SO2 on the SCR reaction over CeO2: Mechanism and significance[J]. Appl Catal B: Environ, 2013,136/137(12):19-28.  

    29. [29]

      CHEN L, LI J H, GE M F. DRIFT Study on Cerium-Tungsten/Titiania Catalyst for Selective Catalytic Reduction of NOx with NH3[J]. Environ Sci Technol, 2010,44:9590-9596. doi: 10.1021/es102692b

    30. [30]

      SANG M L, SUNG S K, SUNG C H. Systematic mechanism study of the high temperature SCR of NOx by NH3 over a W/TiO2 catalyst[J]. Chem Eng Sci, 2012,79:177-185. doi: 10.1016/j.ces.2012.05.032

  • 加载中
    1. [1]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    2. [2]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    3. [3]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    4. [4]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    5. [5]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    6. [6]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    7. [7]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    8. [8]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    9. [9]

      Yiming Liang Ziyan Pan Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016

    10. [10]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    11. [11]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    12. [12]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    13. [13]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    14. [14]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Shunliu Deng Haifeng Su Yaxian Zhu Yuzhi Wang Yuhua Weng Zhaobin Chen Shunü Peng Yinyun Lü Xinyi Hong Yiru Wang Xiaozhen Huang Zhimin Lin Lansun Zheng . Course Ideological and Political Design for Self-Building Experiments of Scientific Instruments: Taking the Construction, Debugging, and Application of Teaching Mass Spectrometer as an Example. University Chemistry, 2024, 39(2): 127-132. doi: 10.3866/PKU.DXHX202308002

    17. [17]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    18. [18]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    19. [19]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    20. [20]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

Metrics
  • PDF Downloads(2)
  • Abstract views(1142)
  • HTML views(125)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return