Citation: LI Wei, ZHAO Jiang-hong, ZHANG Yong, LI Kai-xi, DUAN Dong-hong. Preparation of MoS2/TixOy catalysts via a one-pot solvothermal method for electrocatalytic water splitting to produce hydrogen[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(9): 1090-1095. shu

Preparation of MoS2/TixOy catalysts via a one-pot solvothermal method for electrocatalytic water splitting to produce hydrogen

  • Corresponding author: ZHAO Jiang-hong, likx@sxicc.ac.cn LI Kai-xi, zjh_sx@sxicc.ac.cn
  • Received Date: 19 March 2019
    Revised Date: 12 June 2019

    Fund Project: the Natural Science Foundation of Shanxi Province for Excellent Young Scholars 201601D021006National Natural Science Foundation of China 21776168The project was supported by the Natural Science Foundation of Shanxi Province for Excellent Young Scholars (201601D021006) and National Natural Science Foundation of China (21776168)

Figures(9)

  • A series of MoS2/TixOy catalysts were prepared by a one pot solvothermal synthesis method and the effects of solvent, sulfur source, molybdenum source and titanium subdioxide conductive agent on the electrocatalytic activity of MoS2/TixOy in hydrogen evolution from water splitting were investigated. The results showed that the crystal structure of MoS2/TixOy catalyst as well as its catalytic performance is greatly influenced by the solvent, sulfur source, molybdenum source and titanium subdioxide conductive agent. Water, sulfur and molybdenum sources which can produce ammonium ions via hydrolysis, and the conductive agents are beneficial to improving the hydrogen evolution activity of the MoS2/TixOy catalyst in water splitting. In particular, with water as the solvent, thioacetamide and ammonium molybdate as the sulfur and molybdenum sources, respectively, the MoS2/TixOy catalyst with the highest hydrogen evolution activity was obtained; it needs only 280 mV overpotential to reach 10 mA/cm2 current density in the electrolysis of water.
  • 加载中
    1. [1]

      PACALA S, SOCOLOW R. Stabilization wedges:Solving the climate problem for the next 50 years with current technologies[J]. Science, 2004,305(5686):968-972. doi: 10.1126/science.1100103

    2. [2]

      GONG M, WANG D Y, CHEN C C, HWANG B J, DAI H J. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction[J]. Nano Res, 2016,9(1):28-46. doi: 10.1007/s12274-015-0965-x

    3. [3]

      LU Q, YU Y, MA Q, CHEN B, ZHANG H. 2D Transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions[J]. Adv Mater, 2016,28(10):1917-1933. doi: 10.1002/adma.201503270

    4. [4]

      MAHMOOD J, LI F, JUNG S M, OKYAY M S, AHMAD I, KIM S J, PARK N, JEONG H Y, BAEK J B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction[J]. Nat Nanotechnol, 2017,12(5):441-446. doi: 10.1038/nnano.2016.304

    5. [5]

      STAMENKOVIC V R, MUN B S, ARENZ M, MAYRHOFER K J J, LUCAS C A, WANG G F, ROSS P N, MARKOVIC N M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces[J]. Nat Mater, 2007,6(3):241-247. doi: 10.1038/nmat1840

    6. [6]

      HE Q, WAN Y, JIANG H, WU C, SUN Z, CHEN S, ZHOU Y, CHEN H, LIU D, HALEEM Y, GE B, WU X, SONG L. High-metallic-phase-concentration Mo1-xWxS2 nanosheets with expanded interlayers as efficient electrocatalysts[J]. Nano Res, 2018,11(3):1687-1698. doi: 10.1007/s12274-017-1786-x

    7. [7]

      JARAMILLO T F, JØRGENSEN K P, BONDE J, NIELSEN J H, HORCH S, CHORKENDORFF I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science, 2007,317(5834):100-102. doi: 10.1126/science.1141483

    8. [8]

      HINNEMANN B, MOSES P G, BONDE J, JØRGENSEN K P, NIELSEN J H, HORCH S CHORKENDORFF I, NØRSKOV J K. Biomimetic hydrogen evolution:MoS2 nanoparticles as catalyst for hydrogen evolution[J]. J Am Chem Soc, 2005,127(15):5308-5309. doi: 10.1021/ja0504690

    9. [9]

      DING Q, SONG B, XU P, JIN S. Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds[J]. Chem, 2016,1(5):699-726. doi: 10.1016/j.chempr.2016.10.007

    10. [10]

      JAYABAL S, SARANYA G, WU J, LIU Y, GENG D, MENG X. Understanding the high-electrocatalytic performance of two-dimensional MoS2 nanosheets and their composite materials[J]. J Mater Chem A, 2017,5(47):24540-24563. doi: 10.1039/C7TA08327K

    11. [11]

      LV Z, MAHMOOD N, TAHIR M, PAN L, ZHANG X, ZOU J. Fabrication of zero to three dimensional nanostructured molybdenum sulfides and their electrochemical and photocatalytic applications[J]. Nanoscale, 2016,8(43):18250-18269. doi: 10.1039/C6NR06836G

    12. [12]

      CHHOWALLA M, SHIN H S, EDA G, LI L, LOH K, ZHANG H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nat Chem, 2013,5(4):263-275. doi: 10.1038/nchem.1589

    13. [13]

      LV R T, ROBINSON J A, SCHAAK R E, SUN D, SUN Y F, MALLOUK T E, TERRONES M. Transition metal dichalcogenides and beyond:Synthesis, properties, and applications of single- and few-layer nanosheets[J]. ACC Chem Res, 2015,48(1):56-64. doi: 10.1021/ar5002846

    14. [14]

      LIU Q, LI X L, XIAO Z R, ZHOU Y, CHEN H P, KHALIL A, XIANG T, XU J Q, CHU W S, WU X J, YANG J L, WANG C M, XIONG Y J, JIN C H, AJAYAN P M, SONG L. Stable metallic 1T-WS2 nanoribbons intercalated with ammonia ions:The correlation between structure and electrical/optical properties[J]. Adv Mater, 2015,27(33):4837-4844. doi: 10.1002/adma.201502134

    15. [15]

      XUE N, DIAO P. Composite of few-layered MoS2 grown on carbon black:Tuning the ratio of terminal to total sulfur in MoS2 for hydrogen evolution reaction[J]. J Phys Chem C, 2017,121(27):14413-14425. doi: 10.1021/acs.jpcc.7b02522

    16. [16]

      LI Y G, WANG H L, XIE L M, LIANG Y Y, HONG G S, DAI H J. MoS2 nanoparticles grown on graphene:An advanced catalyst for the hydrogen evolution reaction[J]. J Am Chem Soc, 2011,133(19):7296-7299. doi: 10.1021/ja201269b

    17. [17]

      TANG S B, WU W H, ZHANG S Y, YE D N, ZHONG P, LI X K, LIU L X, LI Y F. Tuning the activity of the inert MoS2 surface via graphene oxide support doping towards chemical functionalization and hydrogen evolution:A density functional study[J]. Phys Chem Chem Phys, 2018,20(3):1861-1871. doi: 10.1039/C7CP06636H

    18. [18]

      DUMA A D, WU Y C, SU W N, PAN C J, TSAI M C, CHEN H M, LEE J F, SHEU H S, HO V T T, HWANG B J. In situ confined synthesis of Ti4O7 supported platinum electrocatalysts with enhanced activity and stability for the oxygen reduction reaction[J]. ChemCatChem, 2018,10(5):1155-1165. doi: 10.1002/cctc.201701503

    19. [19]

      IBRAHIM K B, SU W N, TSAI M C, CHALA S A, KAHSAY A W, YEH M H, CHEN H M, DUMA A D, DAI H J, HWANG B J. Robust and conductive magneli phase Ti4O7 decorated on 3D-nanoflower NiRu-LDH as high-performance oxygen reduction electrocatalyst[J]. Nano Energy, 2018,47:309-315. doi: 10.1016/j.nanoen.2018.03.017

    20. [20]

      IOROI T, SENOH H, YAMAZAKI S I, SIROMA Z, FUJIWARA N, YASUDA K. Stability of corrosion-resistant magneli-phase Ti4O7-supported PEMFC catalysts at high potentials[J]. J Electrochem Soc, 2008,155(4):B321-B326. doi: 10.1149/1.2833310

    21. [21]

      LIU Q, LI X L, HE Q, KHALIL A, LIU D B, XIANG T, WU X J, SONG L. Gram-scale aqueous synthesis of stable few-layered 1T-MoS2:Applications for visible-light-driven photocatalytic hydrogen evolution[J]. Small, 2015,11(41):5556-5564. doi: 10.1002/smll.201501822

    22. [22]

      LIU Y, WU K, GUO X L, WANG W Y, YANG Y Q. A comparison of MoS2 catalysts hydrothermally synthesized from different sulfur precursors in their morphology and hydrodeoxygenation activity[J]. J Fuel Chem Technol, 2018,46(5):34-41.  

    23. [23]

      YIN Y, HAN J C, ZHANG Y M, ZHANG X H, XU P, YUAN Q, SAMAD L, WANG X J, WANG Y, ZHANG Z H, ZHANG P, CAO X Z, SONG B, JIN S. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets[J]. J Am Chem Soc, 2016,138(25):7965-7972. doi: 10.1021/jacs.6b03714

  • 加载中
    1. [1]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    6. [6]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    7. [7]

      Zhao LuHu LvQinzhuang LiuZhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-0. doi: 10.3866/PKU.WHXB202405005

    8. [8]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    9. [9]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    10. [10]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    11. [11]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    12. [12]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    13. [13]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    14. [14]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    15. [15]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    16. [16]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    17. [17]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    18. [18]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    19. [19]

      Yi ZHANGGuang LIWenxuan FANQingfeng YI . Influence of bismuth trisulfide on the electrochemical performance of iron electrode. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1196-1206. doi: 10.11862/CJIC.20240445

    20. [20]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

Metrics
  • PDF Downloads(12)
  • Abstract views(1472)
  • HTML views(235)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return