Citation: YIN Hai-liang, LIU Xin-liang, ZHOU Tong-na, ZHAO Jian, LIN Ai-guo. Effect of ethylene glycol on the hydrogenation performance of P-doped NiMo/Al2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(12): 1458-1467. shu

Effect of ethylene glycol on the hydrogenation performance of P-doped NiMo/Al2O3 catalysts

  • Corresponding author: YIN Hai-liang, yinhl@upc.edu.cn
  • Received Date: 22 July 2019
    Revised Date: 17 October 2019

    Fund Project: Fundamental Research Funds for the Central Universities 19CX02063Athe National Natural Science Foundation of China 21206197The project was supported by the National Natural Science Foundation of China (21206197), Shandong Provincial Natural Science Foundation (ZR2019MB022), Fundamental Research Funds for the Central Universities (19CX02063A)Shandong Provincial Natural Science Foundation ZR2019MB022

Figures(8)

  • NiMoP(x)/Al2O3 catalysts with different ethylene glycol (EG) contents were prepared by impregnating NiMoP solution containing EG into Al2O3. The hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) performances of the catalysts were evaluated using dibenzothiophene (DBT) and quinoline (Q) as the model compounds. The results showed that the HDS and HDN performances of the catalysts could be improved by adding of EG when the amount of EG was low (nEG/nNi ratio value was 0, 0.5, 1, 2, 3, respectively), and the improvement of HDN performance was more obvious than HDS performance. With the increase of EG content, the activity of HDS and HDN of the catalysts was further improved. TEM and XPS analysis showed that EG was helpful to increase the stacking layer number and lamellar length of MoS2 particles in the catalysts, and with the increase of EG content, the stacking layer number and lamellar length of MoS2 particles increased. EG could improve the surface atomic concentration of Mo, but practically had no influence on the surface atomic distribution of Ni. However, EG significantly increased the sulfuration degree of Mo and Ni. TG characterization showed that EG interacted with alumina and metal active components in various ways, and there were high temperature resistant organic species interacting with active components.
  • 加载中
    1. [1]

      GAO Y, HAN W, LONG X Y. Preparation of hydrodesulfurization catalysts using MoS3 nanoparticles as a precursor[J]. Appl Catal B:Environ, 2018,224:330-340. doi: 10.1016/j.apcatb.2017.10.046

    2. [2]

      PRAJAPATI Y N, VERMA N. Hydrodesulfurization of thiophene on activated carbon fiber supported NiMo catalysts[J]. Energy Fuels, 2018,32(2):2183-2196.  

    3. [3]

      XU Yan-chun, LI Xiang, WANG An-jie, YU Zhi-quan, CHEN Yong-ying. Influence of lanthanum oxide on the hydrodenitrogenation performance of bulk MoP[J]. Acta Pet Sin (Pet Process Sect), 2018,34(1):115-122. doi: 10.3969/j.issn.1001-8719.2018.01.016

    4. [4]

      NICOSIA D, PRINS R. The effect of glycol on phosphate-doped CoMo/Al2O3 hydrotreating catalysts[J]. J Catal, 2005,229(2):424-438. doi: 10.1016/j.jcat.2004.11.014

    5. [5]

      VAN HAANDEL L, BREMMER G M, HENSEN E J M, WEBER T. The effect of organic additives and phosphoric acid on sulfiation and activity of (Co)Mo/Al2O3 hydrodesulfurization catalysts[J]. J Catal, 2017,351:95-106. doi: 10.1016/j.jcat.2017.04.012

    6. [6]

      NICOSIA D, PRINS R. The effect of phosphate and glycol on the sulfidation mechanism of CoMo/Al2O3 hydrotreating catalysts:An in situ QEXAFS study[J]. J Catal, 2005,231(2):259-268. doi: 10.1016/j.jcat.2005.01.018

    7. [7]

      STANISLAUS A, MARAFI A, RANA M S. Recent advances in the science and technology of ultra-low sulfur diesel (ULSD) production[J]. Catal Today, 2010,153(1/2):1-68.  

    8. [8]

      ITO E, VAN VEEN J A R. On novel processes for removing sulphur from refinery streams[J]. Catal Today, 2006,116(4):446-460. doi: 10.1016/j.cattod.2006.06.040

    9. [9]

      PIMERZIN A, MOZHAEV A, VARAKIN A, MASLAKOV K, NIKULSHIN P. Comparison of citric acid and glycol effects on the state of active phase species and catalytic properties of CoPMo/Al2O3 hydrotreating catalysts[J]. Appl Catal B:Environ, 2017,205:93-103. doi: 10.1016/j.apcatb.2016.12.022

    10. [10]

      ESCOBAR J, BARRERA M C, TOLEDO J A, CORTES-JACOME M A, ANGELES-CHAVEZ C, NUNEZ S, SANTES V, GOMEZ E, DIAZ L, ROMERO E, PACHECO J G. Effect of ethyleneglycol addition on the properties of P-doped NiMo/Al2O3 HDS catalysts:Part Ⅰ. Materials preparation and characterization[J]. Appl Catal B:Environ, 2009,88(3/4):564-575.  

    11. [11]

      IWAMOTO R, KAGAMI N, SAKODA Y, IINO A. Effect of polyethylene glycol addition on NiO-MoO3/Al2O3 and NiO-MoO3-P2O5/Al2O3 hydrodesulfurization catalyst[J]. J Jpn Pet Inst, 2005,48(6):351-357. doi: 10.1627/jpi.48.351

    12. [12]

      HAN Wen-peng, ZHANG Ye, LI Xue-kuan, TANG Xing-ming, ZHOU Li-gong, WU Ming-hong, GE Hui. Effect of coordinating groups of chelating agents on the hydrodesulfurization over CoMo/Al2O3 catalysts[J]. J Fuel Chem Technol, 2017,45(11):1332-1339. doi: 10.3969/j.issn.0253-2409.2017.11.008 

    13. [13]

      ROB VAN VEEN J A. What's new? On the development of sulphidic HT catalysts before the molecular aspects[J]. Catal Today, 2017,292:2-25. doi: 10.1016/j.cattod.2016.09.027

    14. [14]

      COSTA V, GUICHARD B, DIGNE M, LEGENS C, LECOUR P, MARCHAND K, RAYBAUD P, KREBS E, GEANTET C. A rational interpretation of improved catalytic performances of additive-impregnated dried CoMo hydrotreating catalysts:A combined theoretical and experimental study[J]. Catal Sci Technol, 2013,3(1):140-151. doi: 10.1039/C2CY20553J

    15. [15]

      NGUYEN T S, LORIDANT S, CHANTAL L, CHOLLEY T, GEANTET C. Effect of glycol on the formation of active species and sulfidation mechanism of CoMoP/Al2O3 hydrotreating catalysts[J]. Appl Catal B:Environ, 2011,107(1/2):59-67.  

    16. [16]

      IWAMOTO R, KAGAMI N, IINO A. Effect of polyethylene glycol addition on hydrodesulfurization activity over CoO-MoO3/Al2O3 catalyst[J]. J Jpn Pet Inst, 2005,48(4):237-242. doi: 10.1627/jpi.48.237

    17. [17]

      GUTIERREZ-ALEJANDRE A, LAURRABAQUIO-ROSAS G, RAMIREZ J, BUSCA G. On the role of triethyleneglycol in the preparation of highly active Ni-Mo/Al2O3 hydrodesulfurization catalysts:A spectroscopic study[J]. Appl Catal B:Environ, 2015,166/167:560-567. doi: 10.1016/j.apcatb.2014.11.039

    18. [18]

      ALEXEY L N, GALINA A B, ALEKSANDER A P, IGOR P P, IRINA V D, VLADIMIR A V, EVGENY Y G, EVGENIYA N V, VALERII I B. Effect of Mono-, Di-, and triethylene glycol on the activity of phosphate-doped NiMo/Al2O3 hydrotreating catalysts[J]. Catalysts, 2019,9(1)96.  

    19. [19]

      LUO Xi-hui, HE Jin-hai. A Catalyst Impregnate and Its Preparation Method: CN, 961090480[P]. 2000-11-01.

    20. [20]

      FERDOUS D, DALAI A K, ADJAYE J. A series of NiMo/Al2O3 catalysts containing boron and phosphorous Part Ⅰ. Synthesis and characterization[J]. Appl Catal A:Gen, 2004,260(1):137-151.

    21. [21]

      QU L L, ZHANG W P, KOOYMAN P J, PRINS R. MAS NMR, TPR, and TEM studies of the interaction of NiMo with alumina and silica-alumina supports[J]. J Catal, 2003,215(1):7-13.  

    22. [22]

      SOLIS D, AGUDO A L, RAMIREZ J, KLIMOVA T. Hydrodesulfurization of hindered dibenzothiophenes on bifunctional NiMo catalysts supported on zeolite-alumina composites[J]. Catal Today, 2006,116(4):469-477.  

    23. [23]

      SUN M Y, KOOYMAN P J, PRINS R. A high-resolution transmission electron microscopy study of the influence of fluorine on the morphology and dispersion of WS2 in sulfided W/Al2O3 and NiW/Al2O3 catalysts[J]. J Catal, 2002,206(2):368-375.  

    24. [24]

      HENSEN E J M, KOOYMAN P J, VAN DER MEER Y, VAN DER KRAAN A M, DE BEER V H J, VAN VEEN J A R, VAN SANTEN R A. The relation between morphology and hydrotreating activity for supported MoS2 particles[J]. J Catal, 2001,199(2):224-235.  

    25. [25]

      VRADMAN L, LANDAU M V, HERSKOWITZ M. Hydrodearomatization of petroleum fuel fractions on silica supported Ni-W sulphide with increased stacking number of the WS2 phase[J]. Fuel, 2003,82(6):633-639. doi: 10.1016/S0016-2361(02)00354-X

    26. [26]

      FARAG H, SAKANISHI K, KOUZU M, MATSUMURA A, SUGIMOTO Y, SALTO I. Dibenzothiophene hydrodesulfurization over synthesized MoS2 catalysts[J]. J Mol Catal A:Chem, 2003,206(1/2):399-408.  

    27. [27]

      SHIDO T, PRINS R. Why EXAFS underestimated the size of small supported MoS2 particles[J]. J Phys Chem B, 1998,102(43):8426-8435. doi: 10.1021/jp982322j

    28. [28]

      CALAIS C, MATSUBAYASHI N, GEANTET C, YOSHIMURA Y, SHIMADA H, NISHIJIMA A, LACROIX M, BREYSSE M. Crystallite size determination of highly dispersed unsupported MoS2 catalysts[J]. J Catal, 1998,174(2):130-141. doi: 10.1006/jcat.1998.1934

    29. [29]

      DE LA ROSA M P, TEXIER S, BERHAULT G, CAMACHO A, YACAMAN M J, MEHTA A, FUENTES S, MONTOYA J A, MURRIETA F, CHIANELLI R R. Structural studies of catalytically stabilized model and industrial-supported hydrodesulfurization catalysts[J]. J Catal, 2004,225(2):288-299.  

    30. [30]

      CHIANELLI R R. Periodic trends transition metal sulfide catalysis:Intuition and theory[J]. Oil Gas Sci Technol, 2006,61(4):503-513. doi: 10.2516/ogst:2006022a

    31. [31]

      EIJSBOUTS S. On the flexibility of the active phase in hydrotreating catalysts[J]. Appl Catal A:Gen, 1997,158(1/2):53-92.  

    32. [32]

      KASZTELAN S, TOULHOAT H, GRIMBLOT J, BONNELLE J P. A geometrical model of the active phase of hydrotreating catalysts[J]. Appl Catal, 1984,13(1):127-159.  

    33. [33]

      BRAUN S, APPEL L G, SCHMAL M. Molybdenum species on alumina and silica supports for soot combustion[J]. Catal Commun, 2005,6(1):7-12.  

    34. [34]

      SHAHEEN W M. Thermal behaviour of pure and binary basic nickel carbonate and ammonium molybdate systems[J]. Mater Lett, 2002,52(4/5):272-282.  

    35. [35]

      GRIBOVAL A, BLACHARD P, PAYEN E, FOURNIER M, DUBOIS J L. Alumina supported HDS catalysts prepared by impregnation with new heteropolycompounds. Comparison with catalysts prepared by conventional Co-Mo-P coimpregnation[J]. Catal Today, 1998,45(1/4):277-283.  

    36. [36]

      GRIBOVAL A, BLANCHARD P, GENGEMBRE L, PAYEN E, FOURNIER M, DUBOIS J L, BERNARD J R. Hydrotreatment catalysts prepared with heteropolycompound:Characterization of the oxidic precursors[J]. J Catal, 1999,188(1):102-110.  

    37. [37]

      SARAVANAN L, SUBRAMANIAN S. Surface chemical studies on the competitive adsorption of poly(ethylene glycol) and ammonium poly(methacrylate) onto alumina[J]. J Colloid Interf Sci, 2005,284(2):363-377. doi: 10.1016/j.jcis.2004.08.188

    38. [38]

      PORTELA L, GRANGE P, DELMON B. XPS and NO adsorption studies on alumina-supported Co-Mo catalysts sulfided by different procedures[J]. J Catal, 1995,156(2):243-254.  

    39. [39]

      DAMYANOVA S, PETROV L, GRANGE P. XPS characterization of zirconium-promoted CoMo hydrodesulfurization catalysts[J]. Appl Catal A:Gen, 2003,239(1/2):241-252.  

    40. [40]

      ATANASOVA P, HALACHEV T, UCHYTIL J, KRAUS M. Effect of phosphorus on the surface concentration of molybdenum and nickel in the oxide form of nickel-molybdenum-alumina catalysts and on their hydrodesulfurization activity[J]. Appl Catal, 1988,38:235-240. doi: 10.1016/S0166-9834(00)82828-6

    41. [41]

      WANG X Q, OZKAN U S. Characterization of active sites over reduced Ni-Mo/Al2O3 catalysts for hydrogenation of linear aldehydes[J]. J Phys Chem B, 2005,109(5):1882-1890. doi: 10.1021/jp046489q

    42. [42]

      VENEZIA A M, LA PAROLA V, DEGANELLO G, CAUZZI D, LEONARDI G, PREDIERI G. Influence of the preparation method on the thiophene HDS activity of silica supported CoMo catalysts[J]. Appl Catal A:Gen, 2002,229(1/2):261-271.  

    43. [43]

      GUICHARD B, AUBERGER M R, DEVERS E, LEGENS C, RAYBAUD P. Aging of Co(Ni)MoP/Al2O3 catalysts in working state[J]. Catal Today, 2008,130:97-108. doi: 10.1016/j.cattod.2007.09.007

    44. [44]

      WALTON R A. Some remarks concerning the X-ray photoelectron spectra of the Co-Mo-Al2O3 hydrodesulfurization catalyst system[J]. J Catal, 1976,44(2):335-337.  

    45. [45]

      PAWELEC B, NAVARRO R M, MARTIN J M C, AGUDO A L, VASUDEVAN P T, FIERRO J L G. Silica-alumina-supported transition metal sulphide catalysts for deep hydrodesulphurization[J]. Catal Today, 2003,86(1/4):73-85.  

    46. [46]

      HAYDEN T F, DUMESIC J A. Studies of the structure of molybdenum oxide and sulfide supported on thin films of alumina[J]. J Catal, 1987,103(2):366-384. doi: 10.1016/0021-9517(87)90128-X

  • 加载中
    1. [1]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    4. [4]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    5. [5]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    8. [8]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    9. [9]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    10. [10]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    11. [11]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    12. [12]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    13. [13]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    14. [14]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    15. [15]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    17. [17]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    20. [20]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

Metrics
  • PDF Downloads(7)
  • Abstract views(663)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return