Citation: LI Xin, TONG Jing-yu, ZHANG Wei, WANG Hong, SONG Yong-ji, WANG Si-qi, LI Cui-qing. Synergy of photocatalysis and adsorption on TiO2-CeO2 for the removal of organosulfur compounds from diesel fuel[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(5): 608-615. shu

Synergy of photocatalysis and adsorption on TiO2-CeO2 for the removal of organosulfur compounds from diesel fuel

  • Corresponding author: ZHANG Wei, wzhang@bipt.edu.cn LI Cui-qing, licuiqing@bipt.edu.cn
  • Received Date: 21 February 2017
    Revised Date: 8 March 2017

    Fund Project: the Talents Project of Beijing 2014000020124G087the Undergraduate Research Program 2016J00077the National Natural Science Foundation of China 21646003

Figures(11)

  • TiO2-CeO2 mixed oxides were prepared by urea gelation and co-precipitation method and then characterized by N2 sorption and X-ray diffraction (XRD). The synergy of photocatalysis and adsorption on TiO2-CeO2 adsorbents for the removal of organosulfur compounds from diesel fuel was investigated. The results show that the UV irradiation can greatly enhance the adsorption of organosulfur in model fuel on TiO2-CeO2; the organosulfur compounds is first photocatalytically oxidized to polar sulfoxides and sulfones over TiO2-CeO2, which are then selectively adsorbed on the bifucntional TiO2-CeO2 material due to their much higher polarities than the original oranosulfur compounds and other organic compounds in the diesel fuel. The TiO2-CeO2 material with a Ti/Ce molar ratio of 9:1 and calcined at 500℃ exhibits the highest synergistic photocatalysis-adsorption desulfurization performance; over it the sulfur removal rate reaches 99.6% for a model fuel after reaction for 5 h under UV irradiation. The low desulfurization selctivity because of the strongly competitive adsorption of aromatics in the diesel fule could be greatly improved by employing the synergistic photocatalysis-adsorption desulfurization process; the sulfur removal rate is still higher than 96.6% for the model fuel containing 25% toluene after reaction for 7 h under UV irradiation. The desulfurization performance of TiO2-CeO2 for different organosulfur compounds in the diesel fuel follows the order of 4, 6-DMDBT > DBT > BT. Moreover, TiO2-CeO2 can be well regenrated by washing with acetonitrile followed by heat treatment in air; it still gives a high synergistic photocatalysis-adsorption desulfurization performance even after four regeneration cycles.
  • 加载中
    1. [1]

      SONG C S. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel[J]. Catal Today, 2003,86(1/4):211-263.

    2. [2]

      SONG Hong-yan, HE Jing, LI Chun-xi. Technical strategies and recent advances for deep desulfurization of fuel oils[J]. Petrochem Technol, 2015,44(3):279-286.  

    3. [3]

      LI Wen-xiu, CUI An-lei, FAN Jun-gang, SUN Xiang-le, ZHANG Zhi-gang. Synthesis of spherical activated carbon supported copper catalyst and its performance for adsorptive desulfurization[J]. J Fuel Chem Technol, 2013,41(5):613-618.  

    4. [4]

      WANG Xiao-jing, LIU Chao, DONG Yue, LI Fa-tang, ZHAO Jun, LI Yu-pei. Modification of activated carbon with tetrafluoroboric acid and its performance in adsorption desulfurization of dibenzothiophene[J]. J Fuel Chem Technol, 2015,43(5):607-613.  

    5. [5]

      SUN H Y, SUN L P, LI F, ZHANG L. Adsorption of benzothiophene from fuels on modified NaY zeolites[J]. Fuel Process Technol, 2015,134:284-289. doi: 10.1016/j.fuproc.2015.02.010

    6. [6]

      SONG Li-juan, HU Yue-ting, QIN Yu-cai, YU Wen-guang, ZHANG Xiao-tong. Mechanism of effects of surface acidity on performance of adsorption desulfurization of NiY zeolites[J]. J Fuel Chem Technol, 2016,44(9):1082-1088.  

    7. [7]

      WU L M, XIAO J, WU Y, XIAN S K, MIAO G, WANG H H, LI Z. A combined experimental/computational study on the adsorption of organosulfur compounds over metal-organic frameworks from fuels[J]. Langmuir, 2014,30(4):1080-1088. doi: 10.1021/la404540j

    8. [8]

      QIN L, SHI W P, LIU W F, YANG Y Z, LIU X G, XU B S. Surface molecularly imprinted polymers grafted on ordered mesoporous carbon nanospheres for fuel desulfurization[J]. Rsc Adv, 2016,6(15):12504-12513. doi: 10.1039/C5RA23582K

    9. [9]

      HU Ting-ping, ZHANG Yan-ming, ZHENG Li-hui, FAN Guo-zhi. Molecular recognition and adsorption performance of benzothiophene imprinted polymer on silica gel surface[J]. J Fuel Chem Technol, 2010,38(6):722-729.  

    10. [10]

      ZHANG Wei, LI Xin, TONG Jing-yu, HU Yu, LI Cui-qing. Progresses in ultra-deep desulfurization of fuel oil through adsorption[J]. Petrochem Technol, 2016,45(11):1396-1402. doi: 10.3969/j.issn.1000-8144.2016.11.019

    11. [11]

      BHANDARI V M, HYUN KO C, GEUN PARK J, HAN S S, CHO S H, KIM J N. Desulfurization of diesel using ion-exchanged zeolites[J]. Chem Eng Sci, 2006,61(8):2599-2608. doi: 10.1016/j.ces.2005.11.015

    12. [12]

      KOBAYASHI M, FLYTZANI-STEPHANOPOULOS M. Reduction and sulfidation kinetics of cerium oxide and Cu-modified cerium oxide[J]. Ind Eng Chem Res, 2002,41(13):3115-3123. doi: 10.1021/ie010815w

    13. [13]

      ZHANG W, LIU H Y, XIA Q B, LI Z. Enhancement of dibenzothiophene adsorption on activated carbons by surface modification using low temperature oxygen plasma[J]. Chem Eng J, 2012,209:597-600. doi: 10.1016/j.cej.2012.08.050

    14. [14]

      MA X, SPRAGUE M, SONG C. Deep desulfurization of gasoline by selective adsorption over nickel-based adsorbent for fuel cell applications[J]. Ind Eng Chem Res, 2005,44(15):5768-5775. doi: 10.1021/ie0492810

    15. [15]

      OTSUKI S, NONAKA T, TAKASHIMA N, QIAN W H, ISHIHARA A, IMAI T, KABE T. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction[J]. Energy Fuels, 2000,14(6):1232-1239. doi: 10.1021/ef000096i

    16. [16]

      XIAO J, SONG C S, MA X L, LIT Z. Effects of aromatics, diesel additives, nitrogen compounds, and moisture on adsorptive desulfurization of diesel fuel over activated carbon[J]. Ind Eng Chem Res, 2012,51(8):3436-3443. doi: 10.1021/ie202440t

    17. [17]

      WANG L F, SUN B D, YANG F H, YANG R T. Effects of aromatics on desulfurization of liquid fuel by π-complexation and carbon adsorbents[J]. Chem Eng Sci, 2012,73:208-217. doi: 10.1016/j.ces.2012.01.056

  • 加载中
    1. [1]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    2. [2]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    3. [3]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    4. [4]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    5. [5]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    6. [6]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    7. [7]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    8. [8]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    12. [12]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    13. [13]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    14. [14]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    15. [15]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    16. [16]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    18. [18]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(0)
  • Abstract views(948)
  • HTML views(114)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return