Citation: WANG Hui-jun, WU Ying-quan, TIAN Shao-peng, WANG Li-yan, GONG Na-na, XIE Hong-juan, TAN Yi-sheng. Study on the performance of F-T component modified KCuZrO2 catalyst for CO hydrogenation to isobutanol[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(3): 302-310. shu

Study on the performance of F-T component modified KCuZrO2 catalyst for CO hydrogenation to isobutanol

  • Corresponding author: WU Ying-quan, wvyq@sxicc.ac.cn TAN Yi-sheng, tan@sxicc.ac.cn
  • Received Date: 21 January 2020
    Revised Date: 3 March 2020

    Fund Project: The project was supported by the National Natural Science Foundation of China 21706218The project was supported by the National Natural Science Foundation of China (21573269, 21706218)The project was supported by the National Natural Science Foundation of China 21573269

Figures(6)

  • KCuZrO2 catalysts modified with different F-T elements (Fe, Co, Ni) were prepared by co-precipitation method and then were tested for isobutanol synthesis from catalytic CO hydrogenation. The catalysts were characterized by N2 adsorption and desorption experiments (BET), XRD, TEM, XPS, H2-TPR, CO-TPD and in situ DRIFTS. The results showed that the addition of F-T components promoted the formation of ethanol and propanol, and had different effects on the selectivity of isobutanol. The characterization results showed that Fe promoted the dispersion of catalyst components, and enriched the active component Cu on the catalyst surface, which improved the active adsorption of H2 and CO. In addition, more C1 species were formed on the KFeCuZrO2 catalyst surface, and these C1 species could further react with ethanol and propanol to produce isobutanol. However, the catalysts modified by Co and Ni lacked sufficient C1 species, so the selectivity of isobutanol did not increase significantly. The introduction of Co had little effect on the structure of catalyst and the dispersion of Cu, but the activity of catalyst decreased after Co addition, which might be due to the deactivation of catalyst. After adding Ni to the catalyst, the specific surface area decreased and the particle size increased, and the Cu/Zr molar ratio on the catalyst surface also decreased to 0.19. The interaction between Cu-Zr was weakened, and the isobutanol selectivity was also reduced.
  • 加载中
    1. [1]

      LI Ming-yang. Study on the catalyst for isobutanol synthesis from syngas[D]. Shanghai: East China University of Science and Technology, 2015.

    2. [2]

      SLATING T A, KESAN J P. Making regulator innovation keep pace with technological innovation[J]. Wis Law Rev, 2011:1109-1179.  

    3. [3]

      TIAN Yu, WANG Yi-qiang, WANG Qi-ye. Research progress of isobutanol biosynthesis[J]. Biotechnol Bull, 2013,1(5):40-44.  

    4. [4]

      KOU Yong-li, XIE Hong-juan, LIU Guang-bo, ZHANG Xin-yue, HAN Yi-zhuo, NORITATSU Tsubaki, TAN Yi-sheng. Effect of calcination temperature on the performance of ZnCr based catalyst in isobutanol synthesis[J]. J Fuel Chem Technol, 2013,41(6):703-709.  

    5. [5]

      GAO X F, WU Y Q, ZHANG T, WANG L Y, LI X L, TAN Y S. Binary ZnO/Zn-Cr nanospinel catalysts prepared by a hydrothermal method for isobutanol synthesis from syngas[J]. Cat Sci Technol, 2018,8:2975-2986.  

    6. [6]

      KOU J W, CHENG S Y, GAO Z H, CHENG F Q, HUANG W. Synergistic effects of potassium promoter and carbon fibers on direct synthesis of isobutanol from syngas over Cu/ZnO/Al2O3 catalysts obtained from hydrotalcite-like compounds[J]. Solid State Sci, 2019,87:138-145. doi: 10.1016/j.solidstatesciences.2018.11.007

    7. [7]

      TAN Li, WU Ying-quan, ZHANG Tao, XIE Hong-juan, CHEN Jian-gang. Effect of precipitation temperature on the performance of K-CuLaZrO2 catalyst for isobutanol synthesis from syngas[J]. J Fuel Chem Technol, 2019,47(9):1096-1102.  

    8. [8]

      HE Dai-ping. Higher alcohol and ketone synthesis study on ZrO2-based catalysts[D]. Beijing: University of Chinese Academy of Science, 2004.

    9. [9]

      ARTYUKH Y N, LUNEY N K, VERKHGRADSKII O P, ZELENKOV G A, OEVA L A, LIMOVICH E A. Effect of the introduction of certain additives to the CO+H2 mixture and the scheme for the formation of alcohols higher than C1[J]. Theor Exp Chem, 1990,26:476-479. doi: 10.1007/BF00530266

    10. [10]

      BERETTA A, LIETTI L, TRONCONI E, FORZATTI P, PASQUON I. Development of a mechanistic kinetic model of the higher alcohol synthesis over a Cs-doped Zn/Cr/O catalyst 2. Analysis of chemical enrichment experiments[J]. Ind Eng Chem Res, 1996,35:2154-2160.  

    11. [11]

      WU Y Q, XIE H J, KOU Y L, NORITASTU T, HAN Y Z, TAN Y S. The mechanism of higher alcohol formation on ZrO2-based catalyst from syngas[J]. Korean J Chem Eng, 2015,32:406-412.  

    12. [12]

      XU X, DOESBURG E B M, SCHOLTEN J J F. Synthesis of higher alcohols from syngas recent patented catalysts and tentative on the mechanism[J]. Catal Today, 1987,2:125-170. doi: 10.1016/0920-5861(87)80002-0

    13. [13]

      AO M, PHAM G H, SUNARSO J, TADE M O, LIU S. Active centers of catalysts for higher alcohol synthesis from syngas:A review[J]. ACS Catal, 2018,8:7025-7050.  

    14. [14]

      LUK H T, MONDELI C, FERRE D C, STEWART J A, PEREZ-RAMIREZ J. Status and prospects in higher alcohols synthesis from syngas[J]. Chem Soc Rev, 2017,46:1358-1426.  

    15. [15]

      WANG P, CHEN S Y, BAI Y X, GAO X F, LI X L, SUN K, XIE H J, YANG G H, HAN Y Z, TAN Y S. Effect of the promoter and support on cobalt-based catalysts for higher alcohols synthesis through CO hydrogenation[J]. Fuel, 2017,195:69-81.  

    16. [16]

      SPIVEY J J, EGBEBI A. Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas[J]. Chem Soc Rev, 2007,36:1514-1528.  

    17. [17]

      XIAO K, BAO Z, QI X, WANG X, ZHONG L, FANG K, LIN M, SUN Y. Advances in bifunctional catalysis for higher alcohol synthesis from syngas[J]. Chin J Catal, 2013,34:116-129.  

    18. [18]

      XIAO K, QI X, BAO Z, WANG X, ZHONG L, FANG K, LIN M, SUN Y. CuFe, CuCo and CuNi nanoparticles as catalysts for higher alcohol synthesis from syngas:a comparative study[J]. Catal Sci Technol, 2013,3:1591-1602.  

    19. [19]

      SUN X, YU Y, ZHANG M. Insight into the effect of promoter Co on C2 oxygenate formation from syngas on CoCu(100) and Cu(100):a comparative DFT study[J]. Appl Surf Sci, 2018,434:28-39. doi: 10.1016/j.apsusc.2017.10.164

    20. [20]

      AO M, PHAM G H, SAGE V, PAREEK V. Selectivity enhancement for higher alcohols synthesis product in Fischer-Tropsch synthesis over nickel-substituted La0.9Sr0.1CoO3 perovskite catalysts[J]. Fuel, 2017,206:390-400.  

    21. [21]

      AO M, PHAM G H, SAGE V, PAREEK V, LIU S M. Perovskite-derived trimetallic Co-Ni-Cu catalyst for higher alcohol synthesis from syngas[J]. Fuel Process Technol, 2019,193:141-148.  

    22. [22]

      CHEN Xiao-ping. Study on F-T element modified Cu/Mn/ZrO2 methanol catalysts for higher alcohol synthesis[D]. Beijing: University of Chinese Academy of Science, 1999.

    23. [23]

      XU R, YANG C, WEI W, LI W H, SUN Y H, HU T D. Influence of promoter on catalytic properties of Cu-Mn-Fe/ZrO2 catalysts for alcohols synthesis[J]. React Kinet Catal Lett, 2004,81:91-98.  

    24. [24]

      LI W Z, HUANG H, LI H J, ZHANG W, LIU H C. Facile synthesis of pure monoclinic and tetragonal zirconia nanoparticles and their phase effects on the behavior of supported molybdena catalysts for methanol-selective oxidation[J]. Langmuir, 2008,24:8358-8366.  

    25. [25]

      LI G R, LI W, ZHANG M H, TAO K Y. Characterization and catalytic application of homogeneous nano-composite oxides ZrO2-Al2O3[J]. Catal Today, 2004,93(5):95-601. doi: 10.1016/j.cattod.2004.06.010

    26. [26]

      SUN K, WU Y Q, TAN M H, WANG L Y, YANG G H, ZHANG M, ZHANG W, TAN YS. Ethanol and higher alcohols synthesis from syngas over CuCoM (M=Fe, Cr, Ga and Al) nanoplates derived from hydrotalcite-like precursors[J]. ChemCatChem, 2019,11:2695-2706. doi: 10.1002/cctc.201900096

    27. [27]

      AVGOUROPOULOS G, IOANNIDES T, MATRALIS H. Influence of the preparation method on the performance of CuO-CeO2 catalysts for the selective oxidation of CO[J]. Appl Catal B:Environ, 2005,56:87-93.  

    28. [28]

      WU Y Q, XIE H J, TIAN S P, NORITATSU T, HAN Y Z, TAN Y S. Isobutanol synthesis from syngas over K-Cu/ZrO2-La2O3(x) catalysts:Effect of La-loading[J]. J Mol Catal A:Chem, 2015,396:254-260. doi: 10.1016/j.molcata.2014.10.003

    29. [29]

      YU Q, YAO X J, ZHANG H L, GAO F, DONG L. Effect of ZrO2 addition method on the activity of Al2O3-supported CuO for NO reduction with CO:Impregnation vs. co-precipitation[J]. Appl Catal A:Gen, 2012,423/424:42-51. doi: 10.1016/j.apcata.2012.02.017

    30. [30]

      RIBEIRO N F P, SOUZA M M V M, SCHMAL M. Combustion synthesis of copper catalysts for selective CO oxidation[J]. J Power Sources, 2008,179:329-330. doi: 10.1016/j.jpowsour.2007.12.096

    31. [31]

      WU Y Q, WANG S C, XIE H J, GAO J W, TIAN S P, HAN Y Z, TAN Y S. Influence of Cu on the K-LaZrO2 Catalyst for Isobutanol Synthesis[J]. Acta Phys Chim Sin, 2015,31(1):166-172.  

    32. [32]

      JUNG K T, BELL A T. An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over zirconia[J]. J Catal, 2001,204:339-347.  

    33. [33]

      POKROVSKI K, JUNG K T, BELL A T. Investigation of CO and CO2 adsorption on tetragonal and monoclinic zirconia[J]. Langmuir, 2001,17:4297-4300. doi: 10.1016/j.jpowsour.2007.12.096

    34. [34]

      SANTOS V P, VANDER L B, CHOJECKI A, BUDRONI G, CORTHALS S, SHIBATA H, MEIMA G R, KAPTEIJIN F, MAKKEE M, GASCON J. Mechanistic insight into the synthesis of higher alcohols from syngas:The role of K promotion on MoS2 catalysts[J]. ACS Catal, 2013,3:1634-1637. doi: 10.1021/cs4003518

    35. [35]

      WU Y Q, GONG N N, ZHANG M, ZHANG W, ZHANG T, ZHANG J F, WANG L Y, XIE H J, TAN Y S. Insight into the branched alcohol formation mechanism on K-ZnCr catalysts from syngas[J]. Catal Sci Technol, 2019,9(10):2592-2600. doi: 10.1039/C9CY00542K

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    4. [4]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    5. [5]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    6. [6]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    7. [7]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    8. [8]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    9. [9]

      Xiang-Da ZhangJian-Mei HuangXiaorong ZhuChang LiuYue YinJia-Yi HuangYafei LiZhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937

    10. [10]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    11. [11]

      Fahui XiangLu LiZhen YuanWuji WeiXiaoqing ZhengShimin ChenYisi YangLiangji ChenZizhu YaoJianwei FuZhangjing ZhangShengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

    14. [14]

      Quanyou GuoYue YangTingting HuHongqi ChuLijun LiaoXuepeng WangZhenzi LiLiping GuoWei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235

    15. [15]

      Han YanJingming YaoZhangran YeQiaoquan LinZiqi ZhangShulin LiDawei SongZhenyu WangChuang YuLong Zhang . Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes. Chinese Chemical Letters, 2025, 36(1): 109568-. doi: 10.1016/j.cclet.2024.109568

    16. [16]

      Yang LiuJing LiangMengzhu ZhengHaoze SongLixia ChenHua Li . PD-L1/SHP2 dual PROTACs inhibit melanoma by enhancing T-cell killing activity. Chinese Chemical Letters, 2025, 36(6): 110317-. doi: 10.1016/j.cclet.2024.110317

    17. [17]

      Xian BISisi WANGJinyue ZHANGYujia PENGZhen SHENHua LU . Discovery, development, and perspectives of circularly polarized luminescent materials based on β-isoindigo skeletons. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1049-1057. doi: 10.11862/CJIC.20240456

    18. [18]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    19. [19]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    20. [20]

      Qin WangHan LuoLuli WangLing HuangLiling CaoXuehua DongGuohong Zou . KSb2F7·2KNO3: Unveiling the peak birefringence in inorganic antimony oxysalts. Chinese Chemical Letters, 2025, 36(7): 110173-. doi: 10.1016/j.cclet.2024.110173

Metrics
  • PDF Downloads(7)
  • Abstract views(674)
  • HTML views(80)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return