Citation: YAO Kui, ZHANG Jin-gang, ZHU Huai-li, WANG Xing-jun, YU Guang-suo, LIU Hai-feng, WANG Fu-chen. Catalytic effect of biomass ash on the hydrogasification of coal char[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(1): 21-28. shu

Catalytic effect of biomass ash on the hydrogasification of coal char

  • Corresponding author: WANG Xing-jun, wxj@ecust.edu.cn
  • Received Date: 19 July 2016
    Revised Date: 18 September 2016

    Fund Project: the National Natural Science Foundation of China 21176078

Figures(9)

  • Biomass ashes were prepared from three rich in alkaline and alkaline earth metal materials, viz., wheat straw (WS), sea grape (SG) and ixeris chinensis (IC), at different temperatures of 500, 600 and 815℃; the catalytic effect of biomass ash on the hydro-gasification of Shenfu coal (SF) char was then investigated. The results show that the ash yield and the content of alkali metals and chlorine reduce with increasing ashing temperature from 500 to 815℃; significant ash melting can be observed at high temperature near 815℃. The biomass ashes obtained at 600℃ exhibits the best catalytic effect on the gasification of coal char; the more the ash is loaded with the char, the stronger exhibit the promoting effect on the gasification is. The ash from IC performs best in catalyzing the coal char gasification, whereas the SG ash is the worst catalyst. The high content of silica in the WS ash and the high content of chlorine in the SG ash may explain their poor catalytic effect on the char gasification; chlorine can aggravate the volatilization of alkali metal and lead to a severer inhibiting effect on the coal char hydrogasification than silica with the same molar quantity.
  • 加载中
    1. [1]

      HONG Bing-qing, CHEN Fan-min, WANG Xing-jun, YU Guang-suo. Effect of KOH loading on different coals hydrogasification[J]. J Fuel Chem Technol, 2012,40(9):1032-1037.  

    2. [2]

      JIANG M, JIE H, JIE W. Calcium-promoted catalytic activity of potassium carbonate for steam gasification of coal char:Effect of hydrothermal pretreatment[J]. Fuel, 2013,109(7):14-20.

    3. [3]

      HONG Bing-qing, ZHAN Shu-peng, WANG Xing-jun, WANG Fu-chen, YU Guang-suo. Experimental study on Hohhot coal hydrogasification catalysed by different metal compounds[J]. J Fuel Chem Technol, 2012,40(7):782-789.  

    4. [4]

      SHETH A C, SASTRY C, YEBOAH Y D, XU Y. Agarwal catalytic gasification of coal using eutectic salts:Reaction kinetics for hydrogasification using binary and ternary eutectic catalysts P[J]. Fuel, 2004,83(4/5):557-572.

    5. [5]

      HOWANIEC N, SMOLIŃSKI A. Effect of fuel blend composition on the efficiency of hydrogen-rich gas production in co-gasification of coal and biomass[J]. Fuel, 2014,128:442-450. doi: 10.1016/j.fuel.2014.03.036

    6. [6]

      ZHU W, SONG W, LIN W. Catalytic gasification of char from co-pyrolysis of coal and biomass[J]. Fuel Process Technol, 2008,89(9):890-896. doi: 10.1016/j.fuproc.2008.03.001

    7. [7]

      XIAO Rui-rui, CHEN Xue-li, WANG Fu-chen, YU Guang-suo. The physical and chemical properties of different biomass ash[J]. Acta Energ Sol Sin, 2011,32(3):364-369.  

    8. [8]

      SALO K, MOJTAHEDI W. Fate of alkali and trace metals in biomass gasification[J]. Biomass Bioenergy, 1998,15(3):263-267. doi: 10.1016/S0961-9534(98)00019-1

    9. [9]

      DU S, YANG H, QIAN K, WANG X, CHEN H. Fusion and transformation properties of the inorganic components in biomass ash[J]. Fuel, 2014,117(1):1281-1287.

    10. [10]

      LAHIJANI P, ZAINAL Z A, MOHAMED A R, MOHAMMADI M. Ash of palm empty fruit bunch as a natural catalyst for promoting the CO2, gasification reactivity of biomass char[J]. Bioresour Technol, 2012,132(2):351-355.

    11. [11]

      REN Wei-ping. Investigation of promoting effect of alkali metals in biomass during coal gasification process[J]. Taiyuan:Taiyuan University of Technology, 2015.

    12. [12]

      RIZKIANA J, GUAN G, WIDAYATNO W B, HAO X, LI X, HUANG W, ABUDULA A. Promoting effect of various biomass ashes on the steam gasification of low-rank coal[J]. Appl Energy, 2014,133(6):282-288.

    13. [13]

      XIE Ke-chang, ZHAO Ming-ju, LING Da-qi. Effect of mineral on the surface properties and the CO2-gasification of coal char[J]. J Fuel Chem Technol, 1990,18(4):316-323.  

    14. [14]

      KARIMI A, GRAY M R. Effectiveness and mobility of catalysts for gasification of bitumen coke[J]. Fuels, 2011,90(1):120-125. doi: 10.1016/j.fuel.2010.07.032

    15. [15]

      TAKARADA T, ICHINOSE S, KATO K. Gasification of bituminous coal with K-exchanged brown coal prepared from potassium chloride[J]. Fuels, 1992,71(8):883-887. doi: 10.1016/0016-2361(92)90237-I

    16. [16]

      KOWALSKI T, LUDWIG C, WOKAUN A. Qualitative evaluation of alkali release during the pyrolysis of biomass[J]. Energy Fuels, 2007,21(5):3017-3022. doi: 10.1021/ef070094z

    17. [17]

      OLSSON J G, JÄLID U, PETTERSSON J B C, HAID P. Alkali metal emission during pyrolysis of biomass[J]. Energy Fuels, 1997,11(4):779-784. doi: 10.1021/ef960096b

    18. [18]

      HOUGH D C, SANYAL A, ANNEN K D, GRUNINGER J H, STEWART G W. The development of an improved coal ash viscosity/temperature relationship for the assessment of slagging propensity in coal-fired boilers[J]. J Energy Inst, 1986,59(439):77-81.

    19. [19]

      HAN Yan-na, WANG Lei, YU Jiang-long, WANG Dong-mei, YIN Feng-kui. Effect of calcium on the pyrolysis of lignite and the reactivity of coal char steam-gasification[J]. J Taiyuan Univ Technol, 2013,44(3):264-267.  

    20. [20]

      ZHANG Y, ASHIZAWA M, KAJITANI S, MIURA K. Proposal of a semi-empirical kinetic model to reconcile with gasification reactivity profiles of biomass chars[J]. Fuel, 2008,87(4):475-481.

    21. [21]

      ZHU Huai-li, WANG Xi-ming, WANG Xing-jun, YU Guang-suo, WANG Fu-chen. FT-IR and SEM study on the effect of coal rank on its catalytic hydrogasification[J]. J Fuel Chem Technol, 2014,42(10):1197-1204.  

  • 加载中
    1. [1]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    2. [2]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    3. [3]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    4. [4]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    5. [5]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

    6. [6]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    7. [7]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    8. [8]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    9. [9]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    10. [10]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    11. [11]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    12. [12]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    13. [13]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    16. [16]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    17. [17]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    18. [18]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    19. [19]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    20. [20]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

Metrics
  • PDF Downloads(3)
  • Abstract views(1038)
  • HTML views(95)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return