Citation: YIN Hai-liang, LIU Xin-liang, ZHOU Tong-na, LIN Ai-guo. Effect of preparation method of nanosized zeolite HY-Al2O3 composite as NiMo catalyst support on diesel HDS[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(8): 950-956. shu

Effect of preparation method of nanosized zeolite HY-Al2O3 composite as NiMo catalyst support on diesel HDS

  • Corresponding author: YIN Hai-liang, yinhl@upc.edu.cn
  • Received Date: 23 March 2018
    Revised Date: 25 June 2018

    Fund Project: Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province, China BS2013CL021The project was supported by National Natural Science Foundation of China (21206197), Shandong Provincial Natural Science Foundation, China (2016GSF117030) and Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province, China (BS2013CL021)National Natural Science Foundation of China 21206197Shandong Provincial Natural Science Foundation, China 2016GSF117030

Figures(9)

  • Two NiMo catalysts using the nanosized zeolite HY-Al2O3 composite (labeled as NYA) prepared by mechanical mixing method and sol-gel method as the support were prepared and characterized by XRD, BET, TPD, H2-TPR, HRTEM and FT-IR spectroscopy. The former catalyst possessed larger pore volume and specific surface area, more acid amount, superior reducibility of metal phase and higher dispersion of edge and corner Mo atoms, and showed higher hydrodesulfurization (HDS) performance. Compared with the former catalyst, the latter catalyst had more MoO3 to be converted to active type-Ⅱ NiMoS phase, possessed higher stacking degree and bigger length of MoS2 slabs, and showed lower active phase dispersion. Although the sol-gel method was beneficial to increase the precursor ratio of type-Ⅱ NiMoS phase, the poor pore structure caused by this method inhibited this advantage and reduced the catalytic activity of the catalyst.
  • 加载中
    1. [1]

      ZHOU W W, LIU M F, ZHANG Q, WEI Q, DING S J, ZHOU Y S. Synthesis of NiMo catalysts supported on gallium-containing mesoporous Y zeolites with different gallium contents and their high activities in the hydrodesulfurization of 4, 6-dimethyldibenzothiophene[J]. ACS Catal, 2017,7(11):7665-7679. doi: 10.1021/acscatal.7b02705

    2. [2]

      DING L, ZHENG Y, ZHANG Z, RING Z, CHEN J. HDS, HDN, HDA and hydrocracking of model compounds over Mo-Ni catalysts with various acidities[J]. Appl Catal A:Gen, 2007,319:25-37. doi: 10.1016/j.apcata.2006.11.016

    3. [3]

      JORGE R, AÍDA G A, FELIPE S M, VÍCTOR M A, PERLA C V, LAETITIA O, FRANÇOISE M. HDS of 4, 6-DMDBT over NiMoP/(x)Ti-SBA-15 catalysts prepared with H3PMo12O40[J]. Energy Fuels, 2012,26(2):773-782. doi: 10.1021/ef201590g

    4. [4]

      GUTIERREZ O Y, KLIMOVA T J. Effect of the support on the high activity of the (Ni)Mo/ZrO2-SBA-15 catalyst in the simultaneous hydrodesulfurization of DBT and 4, 6-DMDBT[J]. J Catal, 2011,281(1):50-62. doi: 10.1016/j.jcat.2011.04.001

    5. [5]

      NAVA R, INFANTES M A, CASTANO P, LOPEZ R G, PAWELEC B. Inhibition of CoMo/HMS catalyst deactivation in the HDS of 4, 6-DMDBT by support modification with phosphate[J]. Fuel, 2011,90(8):2726-2737. doi: 10.1016/j.fuel.2011.03.049

    6. [6]

      FU W Q, ZHANG L, TANG T D, KE Q P, WANG S, HU J B, FANG G Y, LI J X, XIAO F S. Extraordinarily high activity in the hydrodesulfurization of 4, 6-Dimethyldibenzothiophene over Pd supported on mesoporous zeolite Y[J]. J Am Chem Soc, 2011,133(39):15346-15349. doi: 10.1021/ja2072719

    7. [7]

      ZHANG L, FU W Q, KE Q P, ZHANG S, JIN H L, HU J B, WANG S, TANG T D. Study of hydrodesulfurization of 4, 6-DM-DBT over Pd supported on mesoporous USY zeolite[J]. Appl Catal A:Gen, 2012,433/434:251-257. doi: 10.1016/j.apcata.2012.05.028

    8. [8]

      RICHARD F, BOITA T, PÉROT G. Reaction mechanism of 4, 6-dimethyldibenzothiophene desulfurization over sulfided NiMoP/Al2O3-zeolite catalysts[J]. Appl Catal A:Gen, 2007,320:69-79.

    9. [9]

      YIN H L, ZHOU T N, LIU Y Q. NiMo/Al2O3 catalyst containing nano-sized zeolite Y for deep hydrodesulfurization and hydrodenitrogenation of diesel[J]. J Nat Gas Chem, 2011,20(4):441-448. doi: 10.1016/S1003-9953(10)60204-6

    10. [10]

      TANG T, ZHANG L, FU W. Design and synthesis of metal sulfide catalysts supported on zeolite nanofiber dundles with unprecedented hydrodesulfurization activities[J]. J Am Chem Soc, 2013,135(31):11437-11440. doi: 10.1021/ja4043388

    11. [11]

      SRINIVAS B N, MAITY S K, PRASAD V V D N, RANA M S, KUMAR M, DHAR G M, RAO P T S R. Support effect studies on TiO2-Al2O3 mixed oxide hydroprocessing catalysts[J]. Stud Surf Sci Catal, 1998,113:497-506.  

    12. [12]

      MAITY S K, ANCHEYTA J, RANA M S, RAYO P. Alumina-titania mixed oxide used as support for hydrotreating catalysts of maya heavy crude-effect of support preparation methods[J]. Energy Fuels, 2016,20(2):427-431.

    13. [13]

      BARRERA M C, VINIEGRA M, ESCOBAR J, VRINAT M, DE LOS REYES J A, MURRIETA F, GARCÍA J. Highly active MoS2 on wide-pore ZrO2-TiO2 mixed oxides[J]. Catal Today, 2004,98(1/2):131-139.

    14. [14]

      BARRERA M C, ESCOBAR J, DE LOS REYES J A, CORTÉS M A, VINIEGRA M, HERNÁNDEZ A. Effect of solvo-thermal treatment temperature on the properties of sol-gel ZrO2-TiO2 mixed oxides as HDS catalyst supports[J]. Catal Today, 2006,116(4):498-504. doi: 10.1016/j.cattod.2006.06.030

    15. [15]

      YIN H L, LIU X L, YUAN Y Y, ZHOU T N. Nanosized HY zeolite-alumina composite support for hydrodesulfurization of FCC diesel[J]. J Porous Mater, 2015,22(1):29-36. doi: 10.1007/s10934-014-9869-5

    16. [16]

      LIU B J, ZHA X J, MENG Q M, HOU H J, GAO S S, ZHANG J X, SHENG S S, YANG W S. Preparation of NiW/TiO2-Al2O3 hydrodesulfurization catalyst with microwave technique[J]. Chin J Catal, 2005,26(6):458-462.

    17. [17]

      PONCELET G, DUBRU M L. An infrared study of the surface acidity of germanic near-faujasite zeolite by pyridine adsorption[J]. J Catal, 1978,52(2):321-331.

    18. [18]

      EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal, 1993,141(2):347-354. doi: 10.1006/jcat.1993.1145

    19. [19]

      TOPSØE H, CLAUSEN B S, CANDIA R, WIVEL C, MØRUP S. In situ mössbauer emission spectroscopy studies of unsupported and supported sulfided CoMo hydrodesulfurization catalysts:Evidence for and nature of a CoMoS phase[J]. J Catal, 1981,68(2):433-452. doi: 10.1016/0021-9517(81)90114-7

    20. [20]

      TOPSØE H, CLAUSEN B S, TOPSØE N Y, ZEUTHEN P. Progress in the design of hydrotreating catalysts based on fundamental molecular insight[J]. Stud Surf Sci Catal, 1989,53:77-102. doi: 10.1016/S0167-2991(08)61061-7

    21. [21]

      MARZARI J A, RAJAGOPAL S, MIRANDA R. Bifunctional mechanism of pyridine hydrodenitrogenation[J]. J Catal, 1995,156(2):255-264. doi: 10.1006/jcat.1995.1252

    22. [22]

      HENSEN E, KOOYMAN P, VAN M Y, VAN K A M. The relation between morphology and hydrotreating activity for supported MoS2 particles[J]. J Catal, 2001,199(2):224-235.  

    23. [23]

      HENSEN E J M, DE BEER V H J, VAN VEEN J A R, VAN SANTEN R A. A refinement on the notion of type Ⅰ and Ⅱ (Co)MoS phases in hydrotreating catalysts[J]. Catal Lett, 2002,84(1/2):59-67.

    24. [24]

      EIJSBOUTS S, HEINERMAN J J L, ELZERMAN H J W. MoS2 structures in high-activity hydrotreating catalysts:Ⅰ. Semi-quantitative method for evaluation of transmission electron microscopy results. Correlations between hydrodesulfurization and hydrodenitrogenation activities and MoS2 dispersion[J]. Appl Catal A:Gen, 1993,105(1):53-68. doi: 10.1016/0926-860X(93)85133-A

  • 加载中
    1. [1]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    2. [2]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    3. [3]

      Siyu ZongXiaowei YuYining YangXin YangJiyang Li . Multi-mode luminescence anti-counterfeiting and visual iron(Ⅲ) ions RTP detection constructed by assembly of CDs&Eu3+ in porous RHO zeolite. Chinese Chemical Letters, 2025, 36(6): 110343-. doi: 10.1016/j.cclet.2024.110343

    4. [4]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    5. [5]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    6. [6]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    7. [7]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    8. [8]

      Zhenzhen Zhao Meichen Jiao Jiejie Ling Han Jiang Yan Gao Hao Xu Hai-Qing Li Jingang Jiang Peng Wu Le Xu . Toward the microporous zeolite family with tunable large-medium cage and pore opening. Chinese Journal of Structural Chemistry, 2024, 43(9): 100336-100336. doi: 10.1016/j.cjsc.2024.100336

    9. [9]

      Tianyao HeGan LiXiaoqiang XieDong HanYunyue LengQiuli ZhangWenming LiuGuobo LiHongxiang ZhangShan HuangTing HuangHonggen Peng . Design of highly active meso-zeolite enveloping Pt–Ni bimetallic catalysts for degradation of toluene. Chinese Chemical Letters, 2025, 36(4): 110137-. doi: 10.1016/j.cclet.2024.110137

    10. [10]

      Shenghui TuAnru LiuHongxiang ZhangLu SunMinghui LuoShan HuangTing HuangHonggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761

    11. [11]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    12. [12]

      Hejie ZhengZhili WangGuizhen LuoCuicui DuXiaohua ZhangJinhua Chen . A novel PEC-EC dual-mode biosensing platform for dual target detection of miRNA-133a and cTnI. Chinese Chemical Letters, 2025, 36(4): 110131-. doi: 10.1016/j.cclet.2024.110131

    13. [13]

      Haiyang Gu Xiang Xu . Multicolor hybrid metal halides and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(9): 100352-100352. doi: 10.1016/j.cjsc.2024.100352

    14. [14]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    15. [15]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    16. [16]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    17. [17]

      Qiuye WangYabing SunLiangxue LaiHaijing CuiYonglong YeMing YangWeihao ZhuBo YuanQuanliang MaoWenzhi RenAiguo Wu . MMP-9-responsive probe for fluorescence-magnetic resonance dual-mode imaging of hepatocellular carcinoma models with different metastatic capacities. Chinese Chemical Letters, 2025, 36(4): 110212-. doi: 10.1016/j.cclet.2024.110212

    18. [18]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    19. [19]

      Yan Cheng Hai-Quan Yao Ya-Di Zhang Chao Shi Heng-Yun Ye Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358

    20. [20]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

Metrics
  • PDF Downloads(6)
  • Abstract views(422)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return