Citation: Fatemeh Nourbakhsh, Mohammad Pazouki, Mohsen Mohsennia. Impact of modified electrodes on boosting power density of microbial fuel cell for effective domestic wastewater treatment:A case study of Tehran[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(7): 871-879. shu

Impact of modified electrodes on boosting power density of microbial fuel cell for effective domestic wastewater treatment:A case study of Tehran

Figures(8)

  • Utilizing microbial fuel cells (MFCs) is a promising technology for energy-efficient domestic wastewater treatment, but it still faces practical barriers such as low power generation. In this study, the LaMnO3 perovskite-type oxide nanoparticles and nickel oxide/carbon nanotube/polyaniline (NCP) nanocomposite (the cathode and anode catalysts, respectively) have been prepared and used to enhance power density of MFC. The prepared La-based perovskite oxide catalysts were characterized by X-ray diffraction (XRD) and scanning electron microscopies (SEM). The electrocatalytic properties of the prepared catalysts were investigated through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) and Tafel plot at ambient temperature. Results show the exchange current densities of LaMnO3/carbon cloth cathode and NCP nanocomposite/carbon cloth anode were 1.68 and 7 times more compared to carbon cloth cathode, respectively. In comparison to the bare carbon cloth anode, the MFC with the modified electrodes shows 11 times more enhancement in power density output which according to electrochemical results, it can be due to the enhancement of the electron transfer capability. These cathodic and anodic catalysts were examined in batch and semi-continuous modes to provide conditions close to industrial conditions. This study suggests that utilizing these low cost catalysts has promising potential for wastewater treatment in MFC with high power generation and good COD removal efficiency.
  • 加载中
    1. [1]

      KHAN M Z, NIZAMI A S, REHAN M, OUDA O K M, SULTANA S, ISMAIL I M , SHAHZAD K. Microbial electrolysis cells for hydrogen production and urban wastewater treatment:A case study of Saudi Arabia[J]. Appl Energy, 2017,185(P1):410-420.  

    2. [2]

      KIM J, KIM K, YE H, LEE E, SHIN C, MCCARTY P L, BAE J. Anaerobic fluidized bed membrane bioreactor for wastewater treatment[J]. Environ Sci Technol, 2011,45(2):576-581. doi: 10.1021/es1027103

    3. [3]

      ANGENENT L T, KARIM K, AL-DAHHAN M, WRENN B A, DOMIGUEZ-ESPINOSA R. Production of bioenergy and biochemicals from industrial and agricultural wastewater[J]. Trends Biotechnol, 2004,22(9):477-485. doi: 10.1016/j.tibtech.2004.07.001

    4. [4]

      HUGGINS T, FALLGREN P H, JIN S, REN Z J. Energy and performance comparison of microbial fuel cell and conventional aeration treating of wastewater[J]. J. Microb Biochem Technol, 20136(S6):1-5.

    5. [5]

      PHAM T H, RABAEY K, AELTERMAN P, CLAUWAERT P, SCHAMPHELAIRE L, BOON N, VERSTRAETE W. Microbial fuel cells in relation to conventional anaerobic digestion technology[J]. Eng Life Sci, 2006,6(3):285-292. doi: 10.1002/(ISSN)1618-2863

    6. [6]

      LOGAN B E, RABEAY K. Conversion of wastes into bioelectricity and chemical by using microbial electrochemical technologies[J]. Science, 2012,337(6095):686-690. doi: 10.1126/science.1217412

    7. [7]

      LOGAN B E, REGAN J M. Electricity-producing bacterial communities in microbial fuel cells[J]. Trends Microbiol, 2006,14(12):512-518. doi: 10.1016/j.tim.2006.10.003

    8. [8]

      YOSHIKAWA K, HIRASAWA T, SHIMIZU H. HIRASAWA T and SHIMIZU H. Effect of malic enzyme on ethanol production by Synechocystis sp. PCC 6803[J]. J Biosci Bioeng, 2015,119(1):82-84. doi: 10.1016/j.jbiosc.2014.06.001

    9. [9]

      RABAEY K, ANGENENT L, SCHRODER U and KELLER J. Bioelectrochemical systems:from extracellular electron transfer to biotechnological application, in Biotechnology Application[M]. London, United Kingdom:IWA Publishing, 2009:137-152.

    10. [10]

      ALZAHRA'A ALATRAKTCHI F, ZHANG Y, ANGELIDAKI I. Nanomodification of the electrodes in microbial fuel cell:Impact of nanoparticle density on electricity production and microbial community[J]. Appl Energy, 2014,116(2013):216-222.  

    11. [11]

      JANICEK A, FAN Y, LIU H. Performance and stability of different cathode base materials for use in microbial fuel cells[J]. J Power Sources, 2015,280:159-165. doi: 10.1016/j.jpowsour.2015.01.098

    12. [12]

      RICHTER H, MCCARTHY K, NEVIN K P, JOHNSON J P, ROTELLO V M, LOVELEY D R. Electricity generation by Geobacter sulfurreducens attached to gold electrodes[J]. Langmuir, 2008,24(8):4367-4379.  

    13. [13]

      FAN Y Z, HU H Q, LIU H. Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration[J]. J Power Sources, 2007,171(2):348-354. doi: 10.1016/j.jpowsour.2007.06.220

    14. [14]

      MIN B, LOGAN B E. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell[J]. Environ Sci Technol, 2004,38(21):5809-5814. doi: 10.1021/es0491026

    15. [15]

      CHAUDHURI S K, LOVLEY D R. Electricity generation by direct oxidation of glucose in microbial fuel cells[J]. Nat Biotechnol, 2003,21(10):1229-1232. doi: 10.1038/nbt867

    16. [16]

      LIU J, LIU J, HE W, QU Y, REN N, FENG Y. Enhanced electricity generation for microbial fuel cell by using electrochemical oxidation to modify carbon cloth anode[J]. J Power Source, 2014,265:391-396. doi: 10.1016/j.jpowsour.2014.04.005

    17. [17]

      MUSTAKEEM M. Electrode materials for microbial fuel cells:nanomaterial approach[J]. Mater Renew Sustain. Energy, 2015,4(4):22-34. doi: 10.1007/s40243-015-0063-8

    18. [18]

      DONG H, YU H, WANG X, ZHOU Q, SUN J. Carbon-supported perovskite oxides as oxygen reduction reaction catalyst in single chambered microbial fuel cells[J]. J Chem Technol Biotechnol, 2012,88(5):774-778.  

    19. [19]

      LI D, QU Y P, LIU J, HE W H, WANG H M, FENG Y J. Using ammonium bicarbonate as pore former in activated carbon catalyst layer to enhance performance of air cathode microbial fuel cell[J]. J Power Sources, 2014,272:909-914. doi: 10.1016/j.jpowsour.2014.09.053

    20. [20]

      FABBRI E, MOHAMED R, LEVECQUE P, CONRAD O, KÖTZ R, SCHMIDT T J. Composite electrode boosts the activity of Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite and carbon toward oxygen reduction in alkaline media[J]. A.C.S. Catal, 2014,4(4):1061-1070. doi: 10.1021/cs400903k

    21. [21]

      JORISSEN L. Bifunctional oxygen/air electrodes[J]. J Power Sources, 2006,155(1):23-32. doi: 10.1016/j.jpowsour.2005.07.038

    22. [22]

      HYODO T, HAYASHI M, MIURA N, YAMAZOE N. Catalytic activities of rare-earth manganites for cathodic reduction of oxygen in alkaline solution[J]. J Electrochem Soc, 1996,143(11):L266-L267. doi: 10.1149/1.1837229

    23. [23]

      BAI L J, WANG X Y, HE H B and GUO Q J. Preparation and characteristics of LaxSr1-xCoO3 as cathode catalysts for microbial fuel cell, in Particle Science and Engineering:Proceedings of UK-China International Particle Technology Forum Ⅳ[M]. UK:The Royal Society of Chemistry, 2014:15-21.

    24. [24]

      KATURI K P, SCOTT K, HEAD I M, PICIOREANU C, CURTIS T P. Microbial fuel cells meet with external resistance[J]. Bioresour Technol, 2011,102(3):2758-2766. doi: 10.1016/j.biortech.2010.10.147

    25. [25]

      YUAN Y, ZHOU S G, LIU Y, TANG J H. Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for high-performance microbial fuel cells[J]. Environ Sci Technol, 2013,47(24):14525-14532. doi: 10.1021/es404163g

    26. [26]

      HE J B, LIN X Q, PAN J. Multi-wall carbon nanotube paste electrode for adsorptive stripping determination of quercetin:A comparison with graphite paste electrode via voltammetry and chronopotentiometry[J]. Electroanalysis, 2005,17(18):1681-1686. doi: 10.1002/(ISSN)1521-4109

    27. [27]

      HOPARK I, CHRISTY M, KIM P, NAHMA K-S. Enhanced electrical contact of microbes using Fe3O4/CNT nanocomposite anode inmediator-less microbial fuel cell[J]. Biosens Bioelectron, 2014,58:75-80. doi: 10.1016/j.bios.2014.02.044

    28. [28]

      WANG Y, LI B, CUI D, XIANG X, LI W. Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell[J]. Biosens Bioelectron, 2014,51:349-355. doi: 10.1016/j.bios.2013.07.069

    29. [29]

      CHANG H Y, CHANG H C, LEE. K Y. Characteristics of NiO coating on carbon nanotubes for electric double layer capacitor application[J]. Vacuum, 2013,87:164-168. doi: 10.1016/j.vacuum.2012.04.027

    30. [30]

      QIAO Y, WU X-S, LI C M. Interfacial electron transfer of Shewanella putrefaciens enhanced by nanoflaky nickel oxide array in microbial fuel cells[J]. J Power Source, 2014,266:226-231. doi: 10.1016/j.jpowsour.2014.05.015

    31. [31]

      YUAN H, DENG L, CHAN Y, YUAN Y. MnO2/Polypyrrole/MnO2 multi-walled-nanotube-modified anode for high-performance microbial fuel cells[J]. Electrochim Acta, 2016,196:280-285. doi: 10.1016/j.electacta.2016.02.183

    32. [32]

      HUANG J, ZHU N, YANG T, ZHANG T, WU P. Nickel oxide and carbon nanotube composite(NiO/CNT)as a novel cathode non-precious metal catalyst in microbial fuel cells[J]. Biosens Bioelectron, 2015,72:332-339. doi: 10.1016/j.bios.2015.05.035

    33. [33]

      LU M, GUO L, KHARKWAL S, WU H, NG H Y, YAU LI S. Manganese-polypyrrole-carbon nanotube, a new oxygen reduction catalyst for air-cathode microbial fuel cells[J]. J Power Source, 2013,221:381-386. doi: 10.1016/j.jpowsour.2012.08.034

    34. [34]

      QIAO Y, LI C M, BAO S-J, BAO Q-L. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells[J]. J Power Source, 2007,170(1):79-84. doi: 10.1016/j.jpowsour.2007.03.048

    35. [35]

      MORADI G R, RAHMANZADEH M, SHARIFNIA S. Kinetic investigation of CO2 reforming of CH4 over La-Ni based perovskite[J]. Chem Eng J, 2010,162(2):787-791. doi: 10.1016/j.cej.2010.06.006

    36. [36]

      LEE J Y, LIANG K, AN K H, LEE Y H. Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance[J]. Synth Met, 2005,150(2):153-157. doi: 10.1016/j.synthmet.2005.01.016

    37. [37]

      QIAO Y, BAO S-J, LI C M, CUI X-Q, LU Z-S, GUO J. Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells[J]. ACS Nano, 2008,2(1):113-119. doi: 10.1021/nn700102s

    38. [38]

      ZOU Y, WANG Y. NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries[J]. Nanoscale, 2011,3(6):2615-2620. doi: 10.1039/c1nr10070j

    39. [39]

      SEKAR N, RAMASAMY R P. Electrochemical impedance spectroscopy for microbial fuel cell characterization[J]. J Microb Biochem Technol, 2013,andamp; Technology, 5(S6):2-14.  

    40. [40]

      LOGAN B E, AELTERMAN P, HAMELERS B, ROZENDAL R, SCHRÖER U, KELLER J, FREGUIA S, VERSTRAETE W, RABAEY K. Microbial fuel cells:methodology and technology[J]. Environ Sci Technol, 2006,40(17):5181-5192. doi: 10.1021/es0605016

    41. [41]

      HSU C H, MANSFELD F. Concerning the conversion of the constant phase element parameter Y0 into a capacitance[J]. Corrosion, 2001,57(9):747-748. doi: 10.5006/1.3280607

    42. [42]

      REZAEI F, RICHARD T L, BRENNAN R, LOGAN B E. Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems[J]. Environ Sci Technol, 2007,41(11):4053-4058. doi: 10.1021/es070426e

    43. [43]

      HE Z, MANSFELD F. Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies[J]. Energ Environ Sci, 2009,22(2):215-219.  

    44. [44]

      ZHOU M, CHI M, WANG H, JIN T. Anode modification by electrochemical oxi-dation:A new practical method to improve the performance of microbial fuel cells[J]. Biochem Eng J, 2012,60:151-155. doi: 10.1016/j.bej.2011.10.014

    45. [45]

      MANOHAR A K, BRETSCHGER O, NEALSON K H, MANSFELD F. The polarization behavior of the anode in a microbial fuel cell[J]. Electrochim Acta, 2008,53(9):3508-3513. doi: 10.1016/j.electacta.2007.12.002

    46. [46]

      ZHAO F, HARNISCH F, SCHRÖDER U, SCHOLZ F, BOGDANOFF P, HERRMANN I. Challenges and constraints of using oxygen cathodes in microbial fuel cells[J]. Environ Sci Technol, 2006,40(17):5193-5199. doi: 10.1021/es060332p

    47. [47]

      GANESH K, JAMBECK J R. Treatment of landfill leachate using microbial fuel cells:Alternative anodes and semi-continuous operation[J]. Bioresour Technol, 2013,139:383-387. doi: 10.1016/j.biortech.2013.04.013

    48. [48]

      REN L, AHN Y, LOGAN B E. A two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (MFC-AFMBR) system for effective domestic wastewater treatment[J]. Environ Sci Technol, 2014,48(7):4199-4206. doi: 10.1021/es500737m

  • 加载中
    1. [1]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    4. [4]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    5. [5]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    6. [6]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    7. [7]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    8. [8]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

    9. [9]

      Zili Ma Zeyu Li Jun Lv . Shortening the formation time of oxide thin film photoelectrodes from hours to seconds. Chinese Journal of Structural Chemistry, 2025, 44(4): 100450-100450. doi: 10.1016/j.cjsc.2024.100450

    10. [10]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    11. [11]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    12. [12]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    13. [13]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    14. [14]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    15. [15]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    16. [16]

      Long LiKang YangChenpeng XiMengchao LiBorong LiGui XuYuanbin XiaoXiancai CuiZhiliang LiuLingyun LiYan YuChengkai Yang . Highly-chlorinated inert and robust interphase without mineralization of oxide enhancing high-rate Li metal batteries. Chinese Chemical Letters, 2024, 35(6): 108814-. doi: 10.1016/j.cclet.2023.108814

    17. [17]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    18. [18]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    19. [19]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    20. [20]

      Qiang WuBaofeng Wang . Exploring synthetic strategy for stabilizing nickel-rich layered oxide cathodes through structural design. Chinese Chemical Letters, 2024, 35(12): 110089-. doi: 10.1016/j.cclet.2024.110089

Metrics
  • PDF Downloads(5)
  • Abstract views(1498)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return