Impact of modified electrodes on boosting power density of microbial fuel cell for effective domestic wastewater treatment:A case study of Tehran
- Corresponding author: Mohammad Pazouki, mpazouki@merc.ac.ir; mpaz6@yahoo.com
Citation:
Fatemeh Nourbakhsh, Mohammad Pazouki, Mohsen Mohsennia. Impact of modified electrodes on boosting power density of microbial fuel cell for effective domestic wastewater treatment:A case study of Tehran[J]. Journal of Fuel Chemistry and Technology,
;2017, 45(7): 871-879.
KHAN M Z, NIZAMI A S, REHAN M, OUDA O K M, SULTANA S, ISMAIL I M , SHAHZAD K. Microbial electrolysis cells for hydrogen production and urban wastewater treatment:A case study of Saudi Arabia[J]. Appl Energy, 2017,185(P1):410-420.
KIM J, KIM K, YE H, LEE E, SHIN C, MCCARTY P L, BAE J. Anaerobic fluidized bed membrane bioreactor for wastewater treatment[J]. Environ Sci Technol, 2011,45(2):576-581. doi: 10.1021/es1027103
ANGENENT L T, KARIM K, AL-DAHHAN M, WRENN B A, DOMIGUEZ-ESPINOSA R. Production of bioenergy and biochemicals from industrial and agricultural wastewater[J]. Trends Biotechnol, 2004,22(9):477-485. doi: 10.1016/j.tibtech.2004.07.001
HUGGINS T, FALLGREN P H, JIN S, REN Z J. Energy and performance comparison of microbial fuel cell and conventional aeration treating of wastewater[J]. J. Microb Biochem Technol, 20136(S6):1-5.
PHAM T H, RABAEY K, AELTERMAN P, CLAUWAERT P, SCHAMPHELAIRE L, BOON N, VERSTRAETE W. Microbial fuel cells in relation to conventional anaerobic digestion technology[J]. Eng Life Sci, 2006,6(3):285-292. doi: 10.1002/(ISSN)1618-2863
LOGAN B E, RABEAY K. Conversion of wastes into bioelectricity and chemical by using microbial electrochemical technologies[J]. Science, 2012,337(6095):686-690. doi: 10.1126/science.1217412
LOGAN B E, REGAN J M. Electricity-producing bacterial communities in microbial fuel cells[J]. Trends Microbiol, 2006,14(12):512-518. doi: 10.1016/j.tim.2006.10.003
YOSHIKAWA K, HIRASAWA T, SHIMIZU H. HIRASAWA T and SHIMIZU H. Effect of malic enzyme on ethanol production by Synechocystis sp. PCC 6803[J]. J Biosci Bioeng, 2015,119(1):82-84. doi: 10.1016/j.jbiosc.2014.06.001
RABAEY K, ANGENENT L, SCHRODER U and KELLER J. Bioelectrochemical systems:from extracellular electron transfer to biotechnological application, in Biotechnology Application[M]. London, United Kingdom:IWA Publishing, 2009:137-152.
ALZAHRA'A ALATRAKTCHI F, ZHANG Y, ANGELIDAKI I. Nanomodification of the electrodes in microbial fuel cell:Impact of nanoparticle density on electricity production and microbial community[J]. Appl Energy, 2014,116(2013):216-222.
JANICEK A, FAN Y, LIU H. Performance and stability of different cathode base materials for use in microbial fuel cells[J]. J Power Sources, 2015,280:159-165. doi: 10.1016/j.jpowsour.2015.01.098
RICHTER H, MCCARTHY K, NEVIN K P, JOHNSON J P, ROTELLO V M, LOVELEY D R. Electricity generation by Geobacter sulfurreducens attached to gold electrodes[J]. Langmuir, 2008,24(8):4367-4379.
FAN Y Z, HU H Q, LIU H. Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration[J]. J Power Sources, 2007,171(2):348-354. doi: 10.1016/j.jpowsour.2007.06.220
MIN B, LOGAN B E. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell[J]. Environ Sci Technol, 2004,38(21):5809-5814. doi: 10.1021/es0491026
CHAUDHURI S K, LOVLEY D R. Electricity generation by direct oxidation of glucose in microbial fuel cells[J]. Nat Biotechnol, 2003,21(10):1229-1232. doi: 10.1038/nbt867
LIU J, LIU J, HE W, QU Y, REN N, FENG Y. Enhanced electricity generation for microbial fuel cell by using electrochemical oxidation to modify carbon cloth anode[J]. J Power Source, 2014,265:391-396. doi: 10.1016/j.jpowsour.2014.04.005
MUSTAKEEM M. Electrode materials for microbial fuel cells:nanomaterial approach[J]. Mater Renew Sustain. Energy, 2015,4(4):22-34. doi: 10.1007/s40243-015-0063-8
DONG H, YU H, WANG X, ZHOU Q, SUN J. Carbon-supported perovskite oxides as oxygen reduction reaction catalyst in single chambered microbial fuel cells[J]. J Chem Technol Biotechnol, 2012,88(5):774-778.
LI D, QU Y P, LIU J, HE W H, WANG H M, FENG Y J. Using ammonium bicarbonate as pore former in activated carbon catalyst layer to enhance performance of air cathode microbial fuel cell[J]. J Power Sources, 2014,272:909-914. doi: 10.1016/j.jpowsour.2014.09.053
FABBRI E, MOHAMED R, LEVECQUE P, CONRAD O, KÖTZ R, SCHMIDT T J. Composite electrode boosts the activity of Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite and carbon toward oxygen reduction in alkaline media[J]. A.C.S. Catal, 2014,4(4):1061-1070. doi: 10.1021/cs400903k
JORISSEN L. Bifunctional oxygen/air electrodes[J]. J Power Sources, 2006,155(1):23-32. doi: 10.1016/j.jpowsour.2005.07.038
HYODO T, HAYASHI M, MIURA N, YAMAZOE N. Catalytic activities of rare-earth manganites for cathodic reduction of oxygen in alkaline solution[J]. J Electrochem Soc, 1996,143(11):L266-L267. doi: 10.1149/1.1837229
BAI L J, WANG X Y, HE H B and GUO Q J. Preparation and characteristics of LaxSr1-xCoO3 as cathode catalysts for microbial fuel cell, in Particle Science and Engineering:Proceedings of UK-China International Particle Technology Forum Ⅳ[M]. UK:The Royal Society of Chemistry, 2014:15-21.
KATURI K P, SCOTT K, HEAD I M, PICIOREANU C, CURTIS T P. Microbial fuel cells meet with external resistance[J]. Bioresour Technol, 2011,102(3):2758-2766. doi: 10.1016/j.biortech.2010.10.147
YUAN Y, ZHOU S G, LIU Y, TANG J H. Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for high-performance microbial fuel cells[J]. Environ Sci Technol, 2013,47(24):14525-14532. doi: 10.1021/es404163g
HE J B, LIN X Q, PAN J. Multi-wall carbon nanotube paste electrode for adsorptive stripping determination of quercetin:A comparison with graphite paste electrode via voltammetry and chronopotentiometry[J]. Electroanalysis, 2005,17(18):1681-1686. doi: 10.1002/(ISSN)1521-4109
HOPARK I, CHRISTY M, KIM P, NAHMA K-S. Enhanced electrical contact of microbes using Fe3O4/CNT nanocomposite anode inmediator-less microbial fuel cell[J]. Biosens Bioelectron, 2014,58:75-80. doi: 10.1016/j.bios.2014.02.044
WANG Y, LI B, CUI D, XIANG X, LI W. Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell[J]. Biosens Bioelectron, 2014,51:349-355. doi: 10.1016/j.bios.2013.07.069
CHANG H Y, CHANG H C, LEE. K Y. Characteristics of NiO coating on carbon nanotubes for electric double layer capacitor application[J]. Vacuum, 2013,87:164-168. doi: 10.1016/j.vacuum.2012.04.027
QIAO Y, WU X-S, LI C M. Interfacial electron transfer of Shewanella putrefaciens enhanced by nanoflaky nickel oxide array in microbial fuel cells[J]. J Power Source, 2014,266:226-231. doi: 10.1016/j.jpowsour.2014.05.015
YUAN H, DENG L, CHAN Y, YUAN Y. MnO2/Polypyrrole/MnO2 multi-walled-nanotube-modified anode for high-performance microbial fuel cells[J]. Electrochim Acta, 2016,196:280-285. doi: 10.1016/j.electacta.2016.02.183
HUANG J, ZHU N, YANG T, ZHANG T, WU P. Nickel oxide and carbon nanotube composite(NiO/CNT)as a novel cathode non-precious metal catalyst in microbial fuel cells[J]. Biosens Bioelectron, 2015,72:332-339. doi: 10.1016/j.bios.2015.05.035
LU M, GUO L, KHARKWAL S, WU H, NG H Y, YAU LI S. Manganese-polypyrrole-carbon nanotube, a new oxygen reduction catalyst for air-cathode microbial fuel cells[J]. J Power Source, 2013,221:381-386. doi: 10.1016/j.jpowsour.2012.08.034
QIAO Y, LI C M, BAO S-J, BAO Q-L. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells[J]. J Power Source, 2007,170(1):79-84. doi: 10.1016/j.jpowsour.2007.03.048
MORADI G R, RAHMANZADEH M, SHARIFNIA S. Kinetic investigation of CO2 reforming of CH4 over La-Ni based perovskite[J]. Chem Eng J, 2010,162(2):787-791. doi: 10.1016/j.cej.2010.06.006
LEE J Y, LIANG K, AN K H, LEE Y H. Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance[J]. Synth Met, 2005,150(2):153-157. doi: 10.1016/j.synthmet.2005.01.016
QIAO Y, BAO S-J, LI C M, CUI X-Q, LU Z-S, GUO J. Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells[J]. ACS Nano, 2008,2(1):113-119. doi: 10.1021/nn700102s
ZOU Y, WANG Y. NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries[J]. Nanoscale, 2011,3(6):2615-2620. doi: 10.1039/c1nr10070j
SEKAR N, RAMASAMY R P. Electrochemical impedance spectroscopy for microbial fuel cell characterization[J]. J Microb Biochem Technol, 2013,andamp; Technology, 5(S6):2-14.
LOGAN B E, AELTERMAN P, HAMELERS B, ROZENDAL R, SCHRÖER U, KELLER J, FREGUIA S, VERSTRAETE W, RABAEY K. Microbial fuel cells:methodology and technology[J]. Environ Sci Technol, 2006,40(17):5181-5192. doi: 10.1021/es0605016
HSU C H, MANSFELD F. Concerning the conversion of the constant phase element parameter Y0 into a capacitance[J]. Corrosion, 2001,57(9):747-748. doi: 10.5006/1.3280607
REZAEI F, RICHARD T L, BRENNAN R, LOGAN B E. Substrate-enhanced microbial fuel cells for improved remote power generation from sediment-based systems[J]. Environ Sci Technol, 2007,41(11):4053-4058. doi: 10.1021/es070426e
HE Z, MANSFELD F. Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies[J]. Energ Environ Sci, 2009,22(2):215-219.
ZHOU M, CHI M, WANG H, JIN T. Anode modification by electrochemical oxi-dation:A new practical method to improve the performance of microbial fuel cells[J]. Biochem Eng J, 2012,60:151-155. doi: 10.1016/j.bej.2011.10.014
MANOHAR A K, BRETSCHGER O, NEALSON K H, MANSFELD F. The polarization behavior of the anode in a microbial fuel cell[J]. Electrochim Acta, 2008,53(9):3508-3513. doi: 10.1016/j.electacta.2007.12.002
ZHAO F, HARNISCH F, SCHRÖDER U, SCHOLZ F, BOGDANOFF P, HERRMANN I. Challenges and constraints of using oxygen cathodes in microbial fuel cells[J]. Environ Sci Technol, 2006,40(17):5193-5199. doi: 10.1021/es060332p
GANESH K, JAMBECK J R. Treatment of landfill leachate using microbial fuel cells:Alternative anodes and semi-continuous operation[J]. Bioresour Technol, 2013,139:383-387. doi: 10.1016/j.biortech.2013.04.013
REN L, AHN Y, LOGAN B E. A two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (MFC-AFMBR) system for effective domestic wastewater treatment[J]. Environ Sci Technol, 2014,48(7):4199-4206. doi: 10.1021/es500737m
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Hao Cai , Xiaoyan Wu , Lei Jiang , Feng Yu , Yuxiang Yang , Yan Li , Xian Zhang , Jian Liu , Zijian Li , Hong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946
Pei Cao , Yilan Wang , Lejian Yu , Miao Wang , Liming Zhao , Xu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421
Wenjing Dai , Lan Luo , Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Yan-Jiang Li , Shu-Lei Chou , Yao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389
Zili Ma , Zeyu Li , Jun Lv . Shortening the formation time of oxide thin film photoelectrodes from hours to seconds. Chinese Journal of Structural Chemistry, 2025, 44(4): 100450-100450. doi: 10.1016/j.cjsc.2024.100450
Dong-Ling Kuang , Song Chen , Shaoru Chen , Yong-Jie Liao , Ning Li , Lai-Hon Chung , Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301
Xinyi Hu , Riguang Zhang , Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
Dong Cheng , Youyou Feng , Bingxi Feng , Ke Wang , Guoxin Song , Gen Wang , Xiaoli Cheng , Yonghui Deng , Jing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623
Jiangping Chen , Hongju Ren , Kai Wu , Huihuang Fang , Chongqi Chen , Li Lin , Yu Luo , Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236
Ying Chen , Li Li , Junyao Zhang , Tongrui Sun , Xuan Zhang , Shiqi Zhang , Jia Huang , Yidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102
Long Li , Kang Yang , Chenpeng Xi , Mengchao Li , Borong Li , Gui Xu , Yuanbin Xiao , Xiancai Cui , Zhiliang Liu , Lingyun Li , Yan Yu , Chengkai Yang . Highly-chlorinated inert and robust interphase without mineralization of oxide enhancing high-rate Li metal batteries. Chinese Chemical Letters, 2024, 35(6): 108814-. doi: 10.1016/j.cclet.2023.108814
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
Jiayu Bai , Songjie Hu , Lirong Feng , Xinhui Jin , Dong Wang , Kai Zhang , Xiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326
Yihong Li , Zhong Qiu , Lei Huang , Shenghui Shen , Ping Liu , Haomiao Zhang , Feng Cao , Xinping He , Jun Zhang , Yang Xia , Xinqi Liang , Chen Wang , Wangjun Wan , Yongqi Zhang , Minghua Chen , Wenkui Zhang , Hui Huang , Yongping Gan , Xinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510
Qiang Wu , Baofeng Wang . Exploring synthetic strategy for stabilizing nickel-rich layered oxide cathodes through structural design. Chinese Chemical Letters, 2024, 35(12): 110089-. doi: 10.1016/j.cclet.2024.110089