Citation: WANG Yan-juan, LIANG Fei-xue, BAI Jin, ZHANG Jian, WANG Hai-yan, WANG Bing. Study on the oxidative desulfurization performance of SiO2-supported divanadium-substituted phosphotungstate hybrid material[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(9): 1099-1104. shu

Study on the oxidative desulfurization performance of SiO2-supported divanadium-substituted phosphotungstate hybrid material

  • Corresponding author: ZHANG Jian, zhangjian_lnpu@163.com
  • Received Date: 5 April 2016
    Revised Date: 20 June 2016

    Fund Project: the Natural Science Foundation of Liaoning Province 2015020590

Figures(6)

  • The Keggin type H5PW10V2O40 was synthesized by Na2HPO4, NaVO3 and Na2WO4·12H2O. The divanadium-substituted phosphotungstate hybrid material [Bmim]5PW10V2O40 was synthesized by reacting H5PW10V2O40 and 1-butyl-3-methylimidazolium bromide ([Bmim]Br). The FT-IR, XRD and UV-vis characterization results show that the [Bmim]5PW10V2O40 hybrid materials possess Keggin structure and the interactions between the [Bmim]+ and the [PW10V2O40]5-. The SiO2-supported [Bmim]5PW10V2O40/SiO2 was prepared and used for oxidative desulfurization of dibenzothiophene (DBT) with the H2O2 as the oxidant. The experimental results show that the DBT conversion can reach 100% in the [Bmim]5PW10V2O40/SiO2-H2O2 oxidation system under the conditions of 40℃, oxigen/sulfur mol ratio 3.0 and 50 min reaction time. The catalyst was easily separated by centrifugation and could be reused for seven times without decreasing in oxidative desulfurization activity after drying treatment.
  • 加载中
    1. [1]

      SONG C H. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel[J]. Catal Today, 2003,86(1/4):211-263.  

    2. [2]

      ETEMADI O, YEN T F. Aspects of selective adsorption among oxidized sulfur compounds in fossil fuels[J]. Energy Fuels, 2007,21(3):1622-1627. doi: 10.1021/ef070016b

    3. [3]

      ZHANG Cun, WANG Feng, PAN Xiao-yu, LIU Xiao-qin. Study on extraction-oxidation desulfurization of model oil by acidic ionic liquid[J]. J Fuel Chem Technol, 2011,3(9):693-693.  

    4. [4]

      MEILLE V, SHULZ E, VRINAT M. A new route towards deep desulfurization: Selective charge transfer complex formation[J]. Chem Commun, 1998,29(19):305-306.  

    5. [5]

      ZHANG Jian, BAI Xiu-mei, LI Xiang, WANG An-jie, MA Xue-hu. Preparation of MoO3-CeO2-SiO2 oxidative desulfurization catalysts by a sol-gel procedure[J]. Chin J Catal, 2009,30(10):1017-1021. doi: 10.1016/S1872-2067(08)60135-7

    6. [6]

      JIANG W, ZHU W S, LI H M, CHAO Y H, XUN S H, CHANG Y H, LIU H, ZHAO Z. Mechanism and optimization for oxidative desulfurization of fuels catalyzed by Fenton-like catalysts in hydrophobic ionic liquid[J]. J Mol Catal A, 2014,382:8-14. doi: 10.1016/j.molcata.2013.10.017

    7. [7]

      SU Jian-xun, AI Dong, ZHAO Rong-xiang, LI Xiu-ping. Study on preparation of CuWO4/C composite and it's application in oxidative desulfurization of model oil[J]. J Fuel Chem Technol, 2015,43(12):1476-1481.  

    8. [8]

      ZHANG M, ZHU W S, XUN S H, LI H M, GU Q Q, ZHAO Z, WANG Q. Deep oxidative desulfurization of dibenzothiophene with POM-based hybrid materials in ionic liquids[J]. Chem Eng J, 2013,220(6):328-336.  

    9. [9]

      OTSUKI S, NONAKA T, TAKASHIMA N. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction[J]. Energy Fuels, 2000,14(6):1232-1239. doi: 10.1021/ef000096i

    10. [10]

      LIANG W D, ZHANG S, LI H F, ZHANG G D. Oxidative desulfurization of simulated gasoline catalyzed by acetic acid-based ionic liquids at room temperature[J]. Fuel Process Technol, 2013,109(2):27-31.  

    11. [11]

      SHIRAISHI Y, NAITO T, HIRAI T. Vanadosilicate molecular sieve as a catalyst for oxidative desulfurization of light oil[J]. Ind Eng Chem Res, 2003,42(24):6034-6039. doi: 10.1021/ie030328b

    12. [12]

      WANG R, ZHANG G, ZHAO H. Polyoxometalate as effective catalyst for the deep desulfurization of diesel oil[J]. Catal Today, 2010,149(1):117-121.  

    13. [13]

      LU H Y, DENG C L, REN W H, YANG X. Oxidative desulfurization of model diesel using[J]. Fuel Process Technol, 2014,119(1):87-91.

    14. [14]

      ZHANG Wei, DING Yong-ping, GONG Jing, SONG Xi-ming. Oxidative desulfurization of dibenzothiophene catalyzed by carboxy-functionalized ionic liquid[J]. J Fuel Chem Technol, 2012,40(5):626-629.  

    15. [15]

      LIU Dan, GUI Jian-zhou, WANG Li, ZHANG Xiao-tong, SONG Li-juan, SUN Zhao-lin. A study of oxidative desulfurzaiton of diesel catalyzed by acidic ionic liquid[J]. J Fuel Chem Technol, 2008,36(5):601-605.  

    16. [16]

      HUANG D, ZHAI Z, LU Y. Optimization of composition of a directly combined catalyst in dibenzothiophene oxidation for deep desulfurization[J]. Ind Eng Chem Res, 2007,46(5):1447-1451. doi: 10.1021/ie0611857

    17. [17]

      COLLINS F M, LUCY A R, SHARP C. Oxidative desulphurization of oils via hydrogen peroxide and heteropolyanion catalysis[J]. J Mol Catal A, 1997,117(1/3):397-403.  

    18. [18]

      XI Z W, ZHOU N, SUN Y, LI K L. Reaction-controlled phase-transfer catalysis for propylene epoxdation to propylene oxide[J]. Science, 2001,292(11):1139-1141.  

    19. [19]

      LU H Y, GAO J B, JIANG Z X, JING F, YANG Y X, WANG G, LI C. Ultra-deep desulfurization of diesel by selevtive oxidation with[J]. J Catal, 2006,239(2):369-375. doi: 10.1016/j.jcat.2006.01.025

    20. [20]

      LO W H, YANG H, WEI G. One-pot desulfurization of light oils bychemical oxidation and solvent extraction with room temperature ionic liquids[J]. Green Chem, 2003,5(9):639-642.  

    21. [21]

      LI C, JIANG Z X, GAO J B. Ultra-deep desulfurization of diesel: Oxidation with a recoverable catalyst assembled in emulsion[J]. Chem Eur J, 2004,10(9):2277-2280. doi: 10.1002/(ISSN)1521-3765

    22. [22]

      LI G, SALIM C, HINODE H. Hydrothermal syntheses and crystal structures of two hybrid materials constructed from polyoxometalate clusters and metal-dipyridine complexes[J]. Solid State Sci, 2008,39(25):121-128.

    23. [23]

      TAMON H, OKAZAKI M. Influence of acidic surface oxides of activated carbon on gas adsorption characteristics[J]. Carbon, 1996,34(6):741-746. doi: 10.1016/0008-6223(96)00029-2

    24. [24]

      RAO G R, RAJKUMAR T. Interaction of keggin anions of 12-tungstophostporic acid with CexZr1-xO2 solid solutions[J]. J Colloid Interface Sci, 2008,324(1/2):134-141.

    25. [25]

      YAMAURA T, KAMATA K, YAMAGUCHI K. Effcient sulfoxidation with hydrogen peroxide catalyzed by a divanadium-substituted phosphotungstate[J]. Catal Today, 2013,203:76-81. doi: 10.1016/j.cattod.2012.01.026

  • 加载中
    1. [1]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    2. [2]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    3. [3]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    4. [4]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    5. [5]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    6. [6]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    7. [7]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    8. [8]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    9. [9]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    10. [10]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    11. [11]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    12. [12]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    13. [13]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    14. [14]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    15. [15]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    16. [16]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    17. [17]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    18. [18]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    19. [19]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    20. [20]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

Metrics
  • PDF Downloads(0)
  • Abstract views(1017)
  • HTML views(136)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return