Citation: Feng Ming, Zhang Gaixia, Zhao Xiaoli, Fang Li. Construction and Application of Molecular Imprinted Electrochemical Sensor for Propyl Gallate Detection[J]. Chemistry, ;2019, 82(3): 243-250. shu

Construction and Application of Molecular Imprinted Electrochemical Sensor for Propyl Gallate Detection

  • Corresponding author: Fang Li, fangli@sxu.edu.cn
  • Received Date: 27 July 2018
    Accepted Date: 30 October 2018

Figures(11)

  • Molecular imprinted polymers (MIPs) were prepared on polyethylenimine (PEI) grafted multi-wall carbon nanotube (MWCNT-PEI) by using propyl gallate (PG) as target molecule, ethylene glycol diglycidyl ether as cross-linker. The molecular imprinted electrochemical sensor (MIES) for PG detection was then constructed by dropping the obtained MIPs onto the surface of glassy carbon electrode (GCE). The obtained materials were characterized and measured by FTIR, XRD, CV, EIS and DPV. The conductivity, linear response, specificity, stability and repeatability of the sensor for PG detection were investigated in detail. The constructed MIES exhibited excellent linear responses to PG in the range of 1×10-8 to 1×10-5 mol·L-1, with a detection limit of 2.5×10-9 mol·L-1. As a result, the recovery of PG in real samples was about 95%~98%.
  • 加载中
    1. [1]

      H H Yong, H J Moon, R Y Bo et al. Toxicol In Vitro, 2010, 24(4):1183~1189. 

    2. [2]

      B B Sha, X B Yin, X H Zhang et al. J. Chromatogr. A, 2007, 1167(1):109~115. 

    3. [3]

      C André, I Castanheira, J M Cruz et al. Trends Food Sci. Tech., 2010, 21(5):229~246. 

    4. [4]

      C Perrin, L Meyer. Food Chem., 2002, 77(1):93~100. 

    5. [5]

      D M Wyatt. J. Am. Oil Chem. Soc., 1981, 58(10):917~920. 

    6. [6]

      Y He, S Xu, M Deng et al. Instrum. Sci. Technol., 2017, 45(4):404~411. 

    7. [7]

      C A I Hall, A Zhu, M G Zeece. J. Agric. Food. Chem., 1994, 42(4):919~921. 

    8. [8]

      Q Xiang, Y Gao, Y Xu et al. Anal. Sci., 2007, 23(6):713~717. 

    9. [9]

      Y Guan, Q Chu, F Liang et al. Food Chem., 2006, 94(1):157~162. 

    10. [10]

      G Xu, Y Chi, L Li et al. Food Chem., 2015, 177:37~42. 

    11. [11]

      A E Vikraman, Z Rasheed, L Rajith et al. Food Anal. Method., 2013, 6(3):775~780. 

    12. [12]

      M Oishi, T Matsuda, S Nojiri et al. Shokuhin Eiseigaku Zasshi (Journal of the Food Hygienic Society of Japan), 2002, 43(2):104~109. 

    13. [13]

      J Riber, C D L Fuente, M D Vazquez et al. Talanta, 2000, 52(2):241~252. 

    14. [14]

      M Luque, A RíOs, M Valcárcel. Anal. Chim. Acta, 1999, 395(1):217~223.

    15. [15]

      M Škrinjar, M H Kolar, N Jelšek et al. J. Food Compos. Anal., 2007, 20:539~545. 

    16. [16]

      R Xing, S Wang, Z Bie et al. Nat. Protoc., 2017, 12(5):964~987. 

    17. [17]

      E Piletska, H Yawer, F Canfarotta et al. Sci. Rep., 2017, 7(1):11537. 

    18. [18]

      O Brüggemann, A Visnjevski, R Burch et al. Anal. Chim. Acta, 2004, 504(1):81~88. 

    19. [19]

      M Huang, W Pang, J Zhang et al. J. Pharm. Biomed. Anal., 2012, 58(1):12~18. 

    20. [20]

       

    21. [21]

      M Cui, J Huang, Y Wang et al. Biosens. Bioelectron., 2015, 68:563~569. 

    22. [22]

      Y Dai, X Li, L Fan et al. Biosens. Bioelectron., 2016, 86:741~747. 

    23. [23]

      J M You, D Kim, S Jeon. Electrochim. Acta, 2012, 65:288~293. 

    24. [24]

      J Y Kim, Y Jo, S Lee et al. Tetrahed. Lett., 2010, 41(8):6290~6292.

    25. [25]

      D Zhang, D Yu, W Zhao et al. Analyst, 2012, 137:2629~2636. 

    26. [26]

      A Martínez-Alonso, S Losada-Barreiro, C Bravo-Díaz. J. Mol. Liq., 2015, 210:143~150. 

    27. [27]

    28. [28]

      H Dong, L Ding, F Yan et al. Biomaterials, 2011, 32:3875~3882. 

    29. [29]

      L Zhao, F Zhao, B Zeng. Biosens. Bioelectron., 2014, 60:71~76. 

    30. [30]

      H Moradian, H Fasehee, H Keshvari et al. Colloids Surf. B, 2014, 122:115~125. 

    31. [31]

      X Xina, S Suna, H Li et al. Sens. Actuat. B, 2015, 209:275~280. 

    32. [32]

      G Wulff. Microchim. Acta, 2013, 180(15):1359~370.

    33. [33]

      M A Khasawneh, P T Vallano1, V T Remcho. J. Chromatogr. A, 2001, 922:87~97. 

    34. [34]

      J H Andrew, L S Francesca, M Panagiotis et al. Anal. Chim. Acta, 2005, 538:9~14. 

    35. [35]

      M D Morales, M C González, A J Reviejo et al. Microchem. J., 2005, 80:71~78. 

    36. [36]

      M P Aguilar-Caballos, A GoÂmez-Hens, D PeÂrez-Bendito. Anal. Chim. Acta, 1997, 354:173~179. 

    37. [37]

      X Kan, H Zhou, C Li et al. Electrochim. Acta, 2012, 63:69~75. 

    38. [38]

      X Xing, S Liu, J Yu et al. Biosens. Bioelectron., 2012, 31:277~283. 

    39. [39]

    40. [40]

       

  • 加载中
    1. [1]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    2. [2]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    3. [3]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    4. [4]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    5. [5]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    6. [6]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    7. [7]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    8. [8]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    9. [9]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    10. [10]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    11. [11]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    14. [14]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    15. [15]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    16. [16]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    17. [17]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    18. [18]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    19. [19]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    20. [20]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

Metrics
  • PDF Downloads(5)
  • Abstract views(780)
  • HTML views(111)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return