Citation: Aihong Hao, Baowei Zhao, Jian Zhang. Research Progress in Analytical Methods of Microplastics in Soil Samples[J]. Chemistry, ;2021, 84(6): 535-542. shu

Research Progress in Analytical Methods of Microplastics in Soil Samples

  • Corresponding author: Baowei Zhao, zhbw2001@sina.com
  • Received Date: 25 September 2020
    Accepted Date: 8 January 2021

  • As new type of pollutants, microplastics have become hot topics for scholars at home and abroad due to their small particle size, being difficult to decompose, containing a variety of pollutants, and being easy to absorb hydrophobic organic pollutants and heavy metals. Microplastics widely exist in the soil environment. The microplastics entering the soil might affect the physical and chemical properties of soil, as well as the growth of soil animals, plants and microorganisms. Moreover, microplastics will migrate in the soil or pass along the food chain, posing potential risks to human health. Efficient, uniform and accurate analysis methods of microplastics are the basis for studying the distribution, migration, fate and ecological risk of microplastics in soil. In this paper, the research progress in the collection, separation, extraction, identification, quantification of microplastics in soil, and the quality control of analytical methods in recent years are reviewed. Furthermore, the advantages and disadvantages of the methods and the application scope are compared. Finally, on the basis of the latest research progress in microplastic pollution at home and abroad, the development trend of analysis technology of soil microplastics in the future is prospected.
  • 加载中
    1. [1]

       

    2. [2]

      Andrady A L. Mar. Pollut. Bull., 2011, 62: 1596~1605. 

    3. [3]

      Cole M, Lindeque P, Halsband C, et al. Mar. Pollut. Bull., 2011, 62: 2588~2597. 

    4. [4]

      Thompson R C, Olsen Y, Mitchell R P, et al. Science, 2004, 304(5672): 838. 

    5. [5]

       

    6. [6]

      Qu X, Su L, Li H, et al. Sci. Total Environ., 2018, 621: 679~686. 

    7. [7]

      Arthur C, Baker J E, Bamford H A. Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris, September 9-11, 2008, University of Washington Tacoma, Tacoma, WA, USA.

    8. [8]

      Law K L, Thompson R C. Science, 2014, 345(6193): 144~145. 

    9. [9]

      Horton A, Walton A, Spurgeon D J, et al. Sci. Total Environ., 2017, 586: 127~141. 

    10. [10]

      Teuten E L, Saquing J M, Knappe D R U, et al. Philos. Transac. Royal Soc. B, 2009, 364(1526): 2027~2045. 

    11. [11]

      Rochman C M, Manzano C, Hentschel B T, et al. Environ. Sci. Technol., 2013, 47(24): 13976~13984. 

    12. [12]

      Nizzetto L, Futter M, Langaas S. Environ. Sci. Technol., 2016, 50: 2685~2691. 

    13. [13]

       

    14. [14]

       

    15. [15]

       

    16. [16]

      Song Y, Cao C, Qiu R, et al. Environ. Pollut., 2019, 250: 447~455. 

    17. [17]

      Liu M, Lu S, Song Y, et al. Environ. Pollut., 2018, 242: 855~862. 

    18. [18]

      Zhang S L, Liu X, Hao X H. Sci. Total Environ., 2020, 708: 135091. 

    19. [19]

      Li Q L, Wu J T, Zhao X P. Environ. Pollut., 2019, 254: 113076. 

    20. [20]

      Jia L, Yang S, Yong B C. Environ. Pollut., 2019, 257: 1~12.

    21. [21]

      Song Y K, Hong S H, Jang M, et al. Mar. Pollut. Bull., 2015, 93: 202~209. 

    22. [22]

      Loder M G J, Gerdts G. Bergmann M, et al. Marine Anthropogenic Litter, Springer, Cham, 2015: 201~227.

    23. [23]

      Hidalgo-Ruz V. Environ. Sci. Technol., 2012, 46: 3060~3075. 

    24. [24]

      Zhou Q, Tian C, Luo Y. Chin. Sci. Bull., 2017, 62(33): 3902~3909. 

    25. [25]

       

    26. [26]

      Zurcher N A. Hongkong China: University of Hongkong, 2009, 3~12.

    27. [27]

       

    28. [28]

      Qiu Q X, Tan Z, Wang J D. Estuar. Coast. Shelf Sci., 2016, 176: 102~109. 

    29. [29]

      Lu X M, Lu P Z, Liu X P. Sci. Total Environ., 2020, 709: 136276. 

    30. [30]

      Cozar A, Sanzmartin M, Martie, et al. PLoS One, 2015, 10(4): e0121762.

    31. [31]

      Browne M A, Crump P, Niven S J, et al. Environ. Sci. Technol., 2011, 45(21): 9175~9179. 

    32. [32]

      Noik V J, Tuah P M. Mater. Sci. Eng., 2015, 78: 012035.

    33. [33]

      Hueley R R, Lusher A L, Olsen M, et al. Environ. Sci. Technol., 2018, 52: 7409~7417. 

    34. [34]

      Alimi O S, Farner B J. Environ. Sci. Technol., 2018, 52: 1704~1724. 

    35. [35]

      Wang W, Wang J. Trends Anal. Chem., 2018, 108: 195~202. 

    36. [36]

      Qi R M, Davey L J, Li Z. Sci. Total Environ., 2020, 73: 134722.

    37. [37]

      Zhang G S, Liu Y F. Sci. Total Environ., 2018, 642: 12~20. 

    38. [38]

      Blasing M, Amelung W. Sci. Total Environ., 2018, 612: 422~435. 

    39. [39]

      Suthar M, Aggarwal P. Int. J. Geosynth Ground Eng., 2016, 2: 1~9. 

    40. [40]

      Scheurer, Bigalke M. Environ. Sci. Technol., 2018, 52: 3591~3598. 

    41. [41]

      Wang W F, Ge J, Yu X Y, et al. Sci. Total Environ., 2019, 708: 134841~134850.

    42. [42]

      Claessens M, Van C L, Vandegehuchte M B, et al. Mar. Pollut. Bull., 2013, 70: 227~233. 

    43. [43]

      Fuller S, Gautam A. Environ. Sci. Technol., 2016, 50(11): 5774~5780. 

    44. [44]

      Zhang S L, Yang X, Gertsen H, et al. Sci. Total Environ., 2018, 616: 1056~1065.

    45. [45]

      Brady N C, Weil R R. The Nature and Properties of Soils (10th edition). Macmillan Publishing Company, New York. 2000, 1~10.

    46. [46]

      Galloway T S, Cole M, Lewis C. Nat. Ecol. Evol., 2017, 1: 0116. 

    47. [47]

      Chubarenko I, Bagaev A, Zobkov M, et al. Mar. Pollut. Bull., 2016, 108: 105~112. 

    48. [48]

      Nuelle M T, Dekiff J H, Remy D, et al. Environ. Pollut., 2014, 184: 161~169. 

    49. [49]

      Tagg A S, Sapp M, Harrison J P, et al. Analogy Chem., 2015, 87: 6032~6040. 

    50. [50]

      Manzano A B. Distribution, entry rate, chemical composition and identification of sources of plastic granules in Enseada de Santos, SP, Brazil. M. Sc. Dissertation, Sao Paulo University, Sao Paulo, Brazil, 2009, 1~11.

    51. [51]

      Enders K, Lenz R, Beer S, et al. ICES J Marine Sci., 2017, 74: 326~331. 

    52. [52]

      Cole M, Webb H, Lindeque P K, et al. Sci. Rep., 2014, 4: 4528.

    53. [53]

      Loder M G J, Imhof H K, Ladehoff M, et al. Environ. Sci. Technol., 2017, 51: 14283~14292. 

    54. [54]

      Zhou Q, Zhang H, Fu C, et al. Geoderma, 2018, 322: 201~208. 

    55. [55]

      Lv W, Zhou W, Lu S, et al. Sci. Total Environ., 2019, 652: 1209~1218. 

    56. [56]

      Zubris K A V, Richards B K. Environ. Pollut., 2005, 138: 201~211. 

    57. [57]

      Corradini F, Eguiluz R, Casado F, et al. Sci. Total Environ., 2019, 671: 411~420. 

    58. [58]

      Nor N H M, Obbard J P. Mar. Pollut. Bull., 2014, 79: 278~283. 

    59. [59]

      Peng J P, Wang J D, Cai L Q. Environ. Asses., 2017, 13: 476~482.

    60. [60]

      Shim W J, Hong S H, Eo S E. Anal. Methods, 2017, 9: 1384~1391. 

    61. [61]

      Vianello A, Boldrin A, Guerriero P, et al. Estuar. Coast. Shelf Sci., 2013, 130: 54~61. 

    62. [62]

      Corcoran P L, Biesinger M C, Grifi M. Mar. Pollut. Bull., 2009, 58(1): 80~84. 

    63. [63]

      Van C L, Vanreusel A, Mees J, et al. Environ. Pollut., 2013, 182: 495~499. 

    64. [64]

      David J, Steinmetz Z, Kucerik J, et al. Anal. Chem., 2018, 90: 8793~8799. 

    65. [65]

      Dumichen E, Eisetraut P, Bannick C G, et al. Chemosphere, 2017, 174: 572~584. 

    66. [66]

      Kappler A, Fischer M, Scholz B B M, et al. Anal. Bioanal. Chem., 2018, 410: 5313~5327. 

    67. [67]

      Paul A, Wander L, Becker R, et al. Environ. Sci. Pollut. Res. Int., 2019, 26: 7364~7374. 

    68. [68]

      Shan J, Zhao J, Liu L, et al. Environ. Pollut., 2018, 238: 121~129. 

    69. [69]

      Li X W, Chen L B, Mei Q Q, et al. Water Res., 2018, 142: 75~85. 

    70. [70]

      Zhang S, Yang X, Gertsen H, et al. Sci. Total Environ., 2018, 616: 1056~1065.

    71. [71]

      Lwanga E H, Vega J M, Quej V K, et al. Sci. Rep., 2017, 7: 14071. 

    72. [72]

      Kong S F, Ji Y Q, Liu L L, et al. Environ. Pollut., 2012, 170: 161~168. 

    73. [73]

      Imhof H K, Schmid J, Niessner R, et al. Limnol. Oceanogr., 2012, 10: 524~537. 

    74. [74]

      Liu M T, Song Y, Lu S B, et al. Sci. Total Environ., 2019, 691: 341~347. 

    75. [75]

      Han X X, Lu X Q, Vogt R D. Environ. Pollut., 2019, 254: 113009. 

  • 加载中
    1. [1]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    2. [2]

      Shui Hu Houjin Li Zhenming Zang Lianyun Li Rong Lai . Integration of Science and Education Promotes the Construction of Undergraduate-to-Master’s Integration Experimental Courses: A Case Study on the Extraction, Separation and Identification of Artemisinin from Artemisia annua. University Chemistry, 2024, 39(4): 314-321. doi: 10.3866/PKU.DXHX202310063

    3. [3]

      Tao Yang Kaijiao Duan Siyu Li Jing Wei Qingdi Yang Qian Wang . A Comprehensive and Innovative Chemical Experimental Teaching: Extraction and Identification of Tea Polyphenols from Pu'er Tea and the Application in Hand Cream Making. University Chemistry, 2024, 39(8): 270-275. doi: 10.3866/PKU.DXHX202312040

    4. [4]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    5. [5]

      Wanqun Hu Pingping Zhu Yuan Zheng Wanqun Zhang Wei Shao Hong Wu Qiang Zhou Kaiping Yang Xiang Sheng . Design and Practice of Ideological and Political Case Study in Instrumental Analysis Experiment Course: the Extraction and Structural Identification of Artemisinin. University Chemistry, 2024, 39(2): 203-207. doi: 10.3866/PKU.DXHX202310062

    6. [6]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    7. [7]

      Tinghui Hu Junwen Long Yi Long Xuanhe Liu . Plastic Disillusionment. University Chemistry, 2025, 40(7): 249-254. doi: 10.12461/PKU.DXHX202409004

    8. [8]

      Zufeng Qiu Jie Ouyang Yiru Wang Hengting Yang Xin Liao Chi Zhang Xuanyao Jiang Shunliu Deng Zhiwei Lin . 综合运用分析仪器解析“盲盒”样品——未知物的剖析. University Chemistry, 2025, 40(6): 296-302. doi: 10.12461/PKU.DXHX202405167

    9. [9]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    10. [10]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    11. [11]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    12. [12]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    13. [13]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    14. [14]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    15. [15]

      Longping Li Jiali Li Tiange Qu Jiaqing Cai Chuyu Zhang Wenji Guo Qiulian Li Fan Luo . “可视化”助力从茶叶中提取咖啡因实验的关键步——升华. University Chemistry, 2025, 40(8): 272-276. doi: 10.12461/PKU.DXHX202409137

    16. [16]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    17. [17]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    18. [18]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    19. [19]

      Peipei SunJinyuan ZhangYanhua SongZhao MoZhigang ChenHui Xu . Built-in Electric Fields Enhancing Photocarrier Separation and H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-0. doi: 10.3866/PKU.WHXB202311001

    20. [20]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

Metrics
  • PDF Downloads(62)
  • Abstract views(4993)
  • HTML views(1004)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return