Effects of different atmospheres on sulfur transformation during K2CO3 catalytic pressurized pyrolysis of coal
- Corresponding author: BI Ji-cheng, bijc@sxicc.ac.cn
Citation:
LIU Fang-gang, ZHANG Yong, QU Xuan, ZHANG Rong, BI Ji-cheng. Effects of different atmospheres on sulfur transformation during K2CO3 catalytic pressurized pyrolysis of coal[J]. Journal of Fuel Chemistry and Technology,
;2016, 44(11): 1287-1296.
BI Ji-cheng, LI Ke-zhong, CUI Xin, ZU Jing-ru, SUN Zhi-qiang, MAO Yan-dogn, KANG Shou-guo. Method for co-production of synthetic gas and coal tar:CN, 102399595A[P]. 2012-04-04.
CHEN H K, LI B Q, YANG J L, ZHANG B J. Transformation of sulfur during pyrolysis and hydro-pyrolysis of coal[J]. Fuel, 1998,77(6):487-493. doi: 10.1016/S0016-2361(97)00275-5
HUANG F, ZHANG L Q, YI B J, XIA Z J, ZHENG C G. Effect of H2O on pyrite transformation behavior during oxy-fuel combustion[J]. Fuel Process Technol, 2015,131:458-465. doi: 10.1016/j.fuproc.2014.12.027
LEVY J H, WHITE T J. The reaction of pyrite with water vapor[J]. Fuel, 1988,67:1336-1339. doi: 10.1016/0016-2361(88)90114-7
SUGAWARA K, ABO K, SUGAWARA T, NISHYAMA Y, SHOLES M A. Dynamic behaviour of sulfur forms in rapid pyrolysis of coals with alkali treatment[J]. Fuel, 1995,74:1823-1829. doi: 10.1016/0016-2361(95)80014-9
LIU Q R, HU H Q, ZHU S W, ZHOU Q, LI W Y, WEI X Y, XIE K C. Desulfurization of coal by pyrolysis and hydro-pyrolysis with addition of KOH/NaOH[J]. Energy Fuels, 2005,19(4):1673-1678. doi: 10.1021/ef0497053
YUAN Shen-fu. Experimental study on gasification characteristics of coal hydrogasification[D]. Taiyuan:Institute of Coal Chemistry, 2015.
MOULDER J F, STICKLE W F, EOBOL P E. Handbook of X-ray Photoelectron Spectroscopy[M]. Eden Prairie:Perkin Elmer Corporation, 1992.
CLEYLE P J, CALEY W F, STEWART I, WHITEWAY S G. Decomposition of pyrite and trapping of sulfur in a coal matrix during pyrolysis of coal[J]. Fuel, 1984,63:1579-1582. doi: 10.1016/0016-2361(84)90230-8
LBARRA J V, PALLCIOS J M, MOLINER R, BONET A. Evidence of reciprocal organic matter-pyrite interactions affecting sulfur removal during coal pyrolysis[J]. Fuel, 1994,73(7):1046-1050. doi: 10.1016/0016-2361(94)90235-6
HUHN F, KLEIN J, JÜNTGEN H. Investigations on the alkali-catalyzed steam gasification of coal:Kinetics and interactions of alkali catalyst with carbon[J]. Fuel, 1983,62(2):196-199. doi: 10.1016/0016-2361(83)90197-7
MIMS C A, PABST J K. Role of surface salt complexes in alkali-catalyzed carbon gasification[J]. Fuel, 1983,62:176-179. doi: 10.1016/0016-2361(83)90193-X
SNAPE E, MITCHELL S C, GARRCIA R, ISMALL K, BARTLE K D. Determination of organic sulfur forms in coals and coal derives by high pressure temperature-programmed reduction[J]. Fuel, 1993,72(5):703-704.
GARCIA R, MOINELO S, LAFFERTY C, SNAPE C E. Pyrolytic desulfurization of some high-sulfur coals[J]. Energy Fuels, 1991,5(4):582-586. doi: 10.1021/ef00028a009
XU W C, KUMAGAI M. Sulfur transformation during rapid hydro-pyrolysis of coal under high pressure by using a continuous free fall pyrolyzer[J]. Fuel, 2003,82:245-254. doi: 10.1016/S0016-2361(02)00290-9
MINKOVA V, RAZVIGOROVA M, GORANOVA M, LJUTZKANOV L, ANGELOVA G. Effect of water vapour on the pyrolysis of solid fuels 1. Effect of water vapour during the pyrolysis of solid fuels on the yield and composition of the liquid products[J]. Fuel, 1991,70(6):713-719. doi: 10.1016/0016-2361(91)90067-K
LANG R J. Anion effects in alkali-catalyzed steam gasification[J]. Fuel, 1986,65(10):1324-1329. doi: 10.1016/0016-2361(86)90097-9
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
Hongyao Li , Youyan Liu , Luwei Dai , Min Yang , Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
Dongqi Cai , Fuping Tian , Zerui Zhao , Yanjuan Zhang , Yue Dai , Feifei Huang , Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
Weikang Wang , Yadong Wu , Jianjun Zhang , Kai Meng , Jinhe Li , Lele Wang , Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093
Yiming Liang , Ziyan Pan , Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016
Yingtong Shi , Guotong Xu , Guizeng Liang , Di Lan , Siyuan Zhang , Yanru Wang , Daohao Li , Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Mengyao Shi , Kangle Su , Qingming Lu , Bin Zhang , Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Hong CAI , Jiewen WU , Jingyun LI , Lixian CHEN , Siqi XIAO , Dan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382
Changyan Sun , Hualei Zhou , Bin Dong . Application of “PBL” Teaching Mode in Inorganic Chemistry Experimental Education in the Perspective of Course Ideology and Politics: Taking Preparation of Manganese Carbonate as an Example. University Chemistry, 2024, 39(11): 378-383. doi: 10.12461/PKU.DXHX202402016
Yu Peng , Jiawei Chen , Yue Yin , Yongjie Cao , Mochou Liao , Congxiao Wang , Xiaoli Dong , Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
1: hopper; 2: electric furnace; 3: fixed-bed reactor; 4: thermocouple; 5: flange; 6: steam generator; 7: water storage tank; 8: high-pressure water pump; 9: mass flowmeter; 10: the primary cooler; 11: gas-liquid separator; 12: ethanediol; 13: circulating pump; 14: n-hexane second-stage cooler; 15: quenching trap; 16: micrometering valve; 17: wet type gas flowmeter; 18: gas bag
(a): BLG; (b): ND
(a), (b): BLG; (c), (d): ND