Citation: GUO Hai-jun, TANG Wei-chao, ZHANG Hai-rong, PENG Fen, WANG Can, HUANG Qian-lin, XIONG Lian, CHEN Xin-de, OUYANG Xin-ping, QIU Xue-qing. Effects of the preparation solvent on structure and catalytic properties of NiCoB amorphous alloy catalysts for hydrogenation of furfural[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(7): 817-827. shu

Effects of the preparation solvent on structure and catalytic properties of NiCoB amorphous alloy catalysts for hydrogenation of furfural

  • Corresponding author: CHEN Xin-de, cxd_cxd@hotmail.com
  • Received Date: 20 March 2017
    Revised Date: 5 May 2017

    Fund Project: the National Natural Science Foundation of China 21406229the Program of Jiangsu Province Science and Technology BE2014101Guangdong Provincial Key Laboratory Foundation of New and Renewable Energy Research and Development Y709jh1001

Figures(8)

  • A series of NiCoB amorphous alloy catalysts were prepared by chemical reduction method in different single and mixed solvent systems and their performance for liquid phase hydrogenation of furfural (FUR) was evaluated. The catalysts were also characterized by N2 adsorption-desorption, ICP, FE-SEM, HRTEM, XRD and XPS. The results showed that the surface tension, viscosity, polarity and solubility parameter of preparation solvent had important effects on the composition, morphology, structure and the catalytic properties of FUR hydrogenation of the NiCoB amorphous alloy catalyst. The NiCoB-MEG catalyst prepared by the mixed solvent of methanol/ethylene glycol (MEG, volume ratio of 1:1) showed the optimum liquid phase hydrogenation performance of FUR to furfuryl alcohol (FA) with a FUR conversion of 96.4% and a FA selectivity of 83.49%. It can be due to the improvement of dispersion and reduction of metallic components by the synergistic effect between methanol and ethylene glycol.
  • 加载中
    1. [1]

      STÖCKER M. Biofuels and biomass-to-liquid fuels in the biorefinery:Catalytic conversion of lignocellulosic biomass using porous materials[J]. Angew Chem Int Ed, 2008,47(48):9200-9211. doi: 10.1002/anie.200801476

    2. [2]

      HAGHIGHI MOOD S, HOSSEIN GOLFESHAN A, TABATABAEI M, SALEHI JOUZANI G, NAJAFI G H, GHOLAMI M, ARDJMAND M. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment[J]. Renewable Sustainable, 2013,27:77-93. doi: 10.1016/j.rser.2013.06.033

    3. [3]

      CAI C M, ZHANG T, KUMAR R, WYMAN C E. Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass[J]. J Chem Technol Biotechnol, 2014,89(1):2-10. doi: 10.1002/jctb.2014.89.issue-1

    4. [4]

      AZADI P, INDERWILDI O R, FARNOOD R, KING D A. Liquid fuels, hydrogen and chemicals from lignin:A critical review[J]. Renewable Sustainable, 2013,21:506-23. doi: 10.1016/j.rser.2012.12.022

    5. [5]

      SRIVASTAVA S, SOLANKI N, MOHANTY P, SHAH K A, PARIKH J K, DALAI A K. Optimization and kinetic studies on hydrogenation of furfural to furfuryl alcohol over SBA-15 supported bimetallic Copper-Cobalt catalyst[J]. Catal Lett, 2015,145(3):816-823. doi: 10.1007/s10562-015-1488-5

    6. [6]

      MARISCAL R, MAIRELES-TORRES P, OJEDA M, S DABA I, L PEZ GRANADOS M. Furfural:A renewable and versatile platform molecule for the synthesis of chemicals and fuels[J]. Energ Environ Sci, 2016,9(4):1144-1189. doi: 10.1039/C5EE02666K

    7. [7]

      WANG F, ZHANG Z. Catalytic transfer hydrogenation of furfural into furfuryl alcohol over Magnetic γ-Fe2O3@HAP catalyst[J]. ACS Sustain Chem Eng, 2017,5(1):942-947. doi: 10.1021/acssuschemeng.6b02272

    8. [8]

      FULAJTAROVA K, SOTAK T, HRONEC M, VAVRA I, DOBROCKA E, OMASTOVA M. Aqueous phase hydrogenation of furfural to furfuryl alcohol over Pd-Cu catalysts[J]. Appl Catal A:Gen, 2015,502:78-85. doi: 10.1016/j.apcata.2015.05.031

    9. [9]

      LIU Qi-ying, LI Yong, CAI Wei-jie, LI Juan, XU Yi-de, SHEN Wen-jie. Selective hydrogenation of furfural to furfural alcohol over nickel-based catalysts[J]. J Mol Catal (China), 2007,21(4):294-299.  

    10. [10]

      VILLAVERDE M M, BERTERO N M, GARETTO T F, MARCHI A J. Selective liquid-phase hydrogenation of furfural to furfuryl alcohol over Cu-based catalysts[J]. Catal Today, 2013,213:87-92. doi: 10.1016/j.cattod.2013.02.031

    11. [11]

      VILLAVERDE M M, GARETTO T F, MARCHI A J. Liquid-phase transfer hydrogenation of furfural to furfuryl alcohol on Cu-Mg-Al catalysts[J]. Catal Commun, 2015,58:6-10. doi: 10.1016/j.catcom.2014.08.021

    12. [12]

      QU Sha-sha, CHEN Xiao-rong. The effect of preparation conditions on the new catalyst performance for hydrogenation of furfural[J]. J Mol Catal (China), 2009,23(3):222-227.  

    13. [13]

      HUANG Yu-hui, REN Guo-qing, SUN Jiao, WANG Chong-qing, CHEN Xiao-rong, MEI Hua. Effect of precipitant on the performance of CuZnAl catalysts in the gas phase selective hydrogenation of furfural to furfuryl alcohol[J]. J Fuel Chem Technol, 2016,44(6):726-731.  

    14. [14]

      GHASHGHAEE M, SADJADI S, SHIRVANI S, FARZANEH V. A novel consecutive approach for the preparation of Cu-MgO catalysts with high activity for hydrogenation of furfural to furfuryl alcohol[J]. Catal Lett, 2017,147(2):318-327. doi: 10.1007/s10562-016-1948-6

    15. [15]

      SUN Jiao, REN Guo-qing, HUANG Yu-hui, CHEN Xiao-rong, MEI Hua. Effect of calcination temperature on the catalytic performance of CuMgAl catalysts for furfural gas phase selective hydrogenation to furfuryl alcohol[J]. J Fuel Chem Technol, 2017,45(1):43-47.  

    16. [16]

      DENG J F, LI H, WANG W. Progress in design of new amorphous alloy catalysts[J]. Catal Today, 1999,51(1):113-125. doi: 10.1016/S0920-5861(99)00013-9

    17. [17]

      LI H, WEI W, ZHAO Y, LI H. Chapter 4. Preparation and catalytic applications of amorphous alloys[J]. Catal, 2015,27:144-186.  

    18. [18]

      SHI Qiu-jie, LI Xiao-yu, YANG Jing, LI Zhi-jun. Ni-B-Mo amorphous alloy catalyst loaded on modified sepiolite and γ-Al2O3 for liquid phase hydrogenation of furfural tofurfuryl alcohol[J]. Fine Chem, 2008,25(2):159-162.  

    19. [19]

      SHI Qiu-jie, LEI Jing-xin, LI Xiao-yu. Effects of the composite support and its preparation methods on properties of Ni-B amorphous alloy catalyst[J]. J Mol Catal (China), 2007,21(5):433-437.  

    20. [20]

      DU C H, ZHAO Y, SUN D. A Co-promoted Ni-B amorphous nanoalloy catalyst for liquid phase hydrogenation of furfural to furfural alcohol[C]//SHI Y G, ZUO J L. Environmental Biotechnology and Materials Engineering, Pts 1-3. 2011, 183-185:2322-2326.

    21. [21]

      SHEN B, WEI S, FANG K, DENG J-F. EXAFS study on ultrafine Ni-Co-B amorphous catalysts[J]. Appl Phys A, 1997,65(3):295-299. doi: 10.1007/s003390050582

    22. [22]

      SHEN B, FANG Z, FAN K, DENG J F. Theoretical study on the structure and catalytic activity of Ni-Co-B amorphous alloy[J]. Acta Chim Sin(Chin Ed), 1999,57:366-371.  

    23. [23]

      CHAI Wei-mei, LUO Hong-shan, LI He-xing. Solvent effects in preparing Co-B catalyst and its application in the selective hydrogenation of furfural to furfuryl alcohol[J]. J Shanghai Normal Univ (Nat Sci), 2005,34(2):87-90.  

    24. [24]

      CHENG X F, WU B S, YANG Y, XIANG H W, LI Y W. Fischer-Tropsch synthesis in polyethylene glycol with amorphous iron nanocatalysts prepared by chemical reduction in various solvents[J]. J Mol Catal A:Chem, 2010,329(1/2):103-109.  

    25. [25]

      LUO H S, LI H I, ZHUANG L. Furfural hydrogenation to furfuryl alcohol over a novel Ni-Co-B amorphous alloy catalyst[J]. Chem Lett, 2001,30(5):404-405. doi: 10.1246/cl.2001.404

    26. [26]

      SHEN J Y, LI Z Y, YAN Q J, CHEN Y. Reactions of bivalent metal ions with borohydride in aqueous solution for the preparation of ultrafine amorphous alloy particles[J]. J Phys Chem, 1993,97(32):8504-8511. doi: 10.1021/j100134a020

    27. [27]

    28. [28]

      LI H, CHAI W M, LUO H S, LI H X. Hydrogenation of furfural to furfuryl alcohol over Co-B amorphous catalysts prepared by chemical reduction in variable media[J]. Chin J Chem, 2006,24(12):1704-1708. doi: 10.1002/(ISSN)1614-7065

    29. [29]

      SHARMA R V, DAS U, SAMMYNAIKEN R, DALAI A K. Liquid phase chemo-selective catalytic hydrogenation of furfural to furfuryl alcohol[J]. Appl Catal A:Gen, 2013,454:127-136. doi: 10.1016/j.apcata.2012.12.010

    30. [30]

      KANG D, LEE J W. Enhanced methane decomposition over nickel-carbon-B2O3 core-shell catalysts derived from carbon dioxide[J]. Appl Catal B:Environ, 2016,186:41-55. doi: 10.1016/j.apcatb.2015.12.045

    31. [31]

      LUO Hong-shan, ZHUANG Li, LI He-xing. Preparation of furfuryl alcohol via liquid phase furfural hydrogenation over the ultrafine Ni-B amorphous alloy[J]. J Mol Catal (China), 2002,16(1):49-54.  

    32. [32]

      LIU B J, LU L H, WANG B C, CAI T X, KATSUYOSHI I. Liquid phase selective hydrogenation of furfural on Raney nickel modified by impregnation of salts of heteropolyacids[J]. Appl Catal A:Gen, 1998,171:117-122. doi: 10.1016/S0926-860X(98)00081-7

  • 加载中
    1. [1]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    5. [5]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    6. [6]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    7. [7]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    8. [8]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    9. [9]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    10. [10]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    11. [11]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    12. [12]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    13. [13]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    14. [14]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    15. [15]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    16. [16]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(0)
  • Abstract views(1157)
  • HTML views(156)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return