Citation: Li Minhao, Wang Zeming, Yang Jie, Wang Jiaxi. Advances in Monolithic Columns Technology in HPLC[J]. Chemistry, ;2019, 82(1): 18-26. shu

Advances in Monolithic Columns Technology in HPLC

  • Corresponding author: Wang Jiaxi, wangjiaxi@ebu.edu.cn
  • Received Date: 1 July 2018
    Accepted Date: 25 September 2018

Figures(9)

  • As a new type of separating medium, high performance liquid chromatography (HPLC) monolithic columns have attracted considerable attention on account of its own characteristics, such as the simple preparation process, easy to be modified and excellent separation properties. Especially, due to its favorable biocompatibility, high column efficiency, long life, wide of the raw material source, good repeatability, unrestricted by pH, polymer-based monolithic columns are frequently used to separate and detect some small molecules compounds and proteins in food, chemical industry, agriculture, environment and biomedical science, which have shown a promising application prospect. Refer to the latest reports about HPLC, this review will focus on the research achievements of the preparation, modification method and application of monolithic columns in recent ten years. In addition, the future prospects for development regarding monolithic columns in various fields are also expected.
  • 加载中
    1. [1]

       

    2. [2]

      H Wang, J Ou, J Bai et al. J. Chromatogr. A, 2016, 1436:100~108. 

    3. [3]

      D L Mould, R L M Synge. Analyst, 1958, 77(1952):964~970.

    4. [4]

       

    5. [5]

      C Aydogǧan, F Yılmaz, D Çimen et al. Electrophoresis, 2013, 34(13):1908~1914. 

    6. [6]

      D Gharbharan, D Britsch, G Soto et al. J. Chromatogr. A, 2015, 1408:101~107. 

    7. [7]

      K Cabrera, G Wieland, D Lubda et al. Trends Anal. Chem., 1998, 17(1):50~53.

    8. [8]

      B Bidlingmaier, K K Unger, N V Doehren. J. Chromatogr. A, 1999, 832:11~16. 

    9. [9]

      Y F Shen, R Zhang, R J Moore et al. Anal. Chem., 2005, 77(10):3090~3100. 

    10. [10]

       

    11. [11]

      N Itoh, T Santa, M Kato. Anal. Bioanal. Chem., 2015, 407(21):6429~6434. 

    12. [12]

    13. [13]

      P Jandera, T Hajek, M Stankova. Anal. Bioanal. Chem., 2015, 407(1):139~151. 

    14. [14]

      M R Buchmeiser. Polymer, 2007, 48(8):2187~2198. 

    15. [15]

      D Fan, L Jia, H Xiang et al. Food Chem., 2017, 224:32~36. 

    16. [16]

      H Shao, L Zhao, J Chen et al. J. Pharm. Biomed. Anal., 2015, 111:241~247. 

    17. [17]

       

    18. [18]

      S Aȿir, A Derazshamshir, F Yılmaz et al. Electrophoresis, 2015, 36(23):2888~2895. 

    19. [19]

       

    20. [20]

      L X Chen, X Y Wang, W H Lu et al. J. Chem. Soc. Rev., 2016, 45(8):2137~2211. 

    21. [21]

    22. [22]

      C Zheng, Y P Huang, Z S Liu. J. Sep. Sci., 2011, 34:1988~2002.

    23. [23]

      G Y Sun, D D Zhong, X J Li et al. Anal. Bioanal. Chem., 2015, 407(24):7401~7412. 

    24. [24]

      J B Jiang, Q Zhou, C C Kang et al. J. Appl. Polym. Sci., 2013, 129(6):3425~3431. 

    25. [25]

      C Algieri, E Drioli, L Guzzo et al. Sensors, 2014, 14(8):13863~13912. 

    26. [26]

      H M Duan, X J Wang, Y H Wang et al. RSC Adv., 2015, 5(107):88492~88499. 

    27. [27]

      S A Zaidi. Biomater. Sci., 2017, 5(3):388~402. 

    28. [28]

      K Nakazato, J Mohammad, S Hjertén. Chromatographia, 1994, 39:655~662. 

    29. [29]

      M Chocholouskova, M Komendova, J Urban. J. Chromatogr. A, 2017, 1488:85~92. 

    30. [30]

      X Dong, R Wu, J Dong et al. Electrophoresis, 2008, 29(4):919~927. 

    31. [31]

      G Zhu, H Yuan, P Zhao et al. Electrophoresis, 2006, 27(18):3578~3583. 

    32. [32]

      F M Plieva, J Andersson, I Y Galaev et al. J. Sep. Sci., 2004, 27:828~836. 

    33. [33]

      F Svec, J M J Frechet. Science, 1996, 273:205~211. 

    34. [34]

    35. [35]

      H Ren, X Zhang, Z Li et al. J. Sep. Sci., 2017, 40(4):826~833. 

    36. [36]

      F Svec. J. Chromatogr. A, 2010, 1217(6):902~924. 

    37. [37]

      R Guo, D Zhang, X Zhu et al. Chromatographia, 2016, 80(1):23~30.

    38. [38]

      M Paljevac, J Kotek, K Jerǎbek et al. Macromol. Mater. Eng., 2018, 303(2):1700337~170344. 

    39. [39]

      J F Wang, X Y Jiang, H Zhang et al. Anal. Methods, 2015, 7(18):7879~7888. 

    40. [40]

      G Guiochon. J. Chromatogr. A, 2007, 1168:101~168. 

    41. [41]

      W J Han, Y R Xin, U Hasegawa et al. Polym. Degrad. STab., 2014, 109:362~366. 

    42. [42]

      P Simone, G Pierri, P Foglia et al. J. Sep. Sci., 2016, 39(2):264~271. 

    43. [43]

      S Currivan, J M Macak, P Jandera. J. Chromatogr. A, 2015, 1402:82~93. 

    44. [44]

      P Guo, Z Luo, X Xu et al. Food Chem., 2017, 217:628~636. 

    45. [45]

      T Hirano, S Kitagawa, H Ohtani et al. Anal. Bioanal. Chem., 2013, 405(25):8319~8326. 

    46. [46]

      D Grzywinski, M Szumski, B Buszewski. J. Chromatogr. A, 2016, 1477:11~21. 

    47. [47]

       

    48. [48]

      T Koriyama, T A Asoh, A Kikuchi. Colloid. Surf., B, 2016, 147:408~415. 

    49. [49]

      Z Mao, Z Chen. J. Chromatogr. A, 2017, 1480:99~105. 

    50. [50]

      S Liu, J Peng, Z Liu et al. Sci. Rep., 2016, 6:34718~34728. 

    51. [51]

      Z Lin, H Huang, S Li et al. J. Chromatogr. A, 2013, 1271(1):115~123. 

    52. [52]

    53. [53]

      A M James, D Hayes. Anal. Chem., 2000, 72(17):4090~4099. 

    54. [54]

      Z Zhang, Z Wu, M J Wirth. J. Chromatogr. A, 2013, 1301:156~161. 

    55. [55]

      R E Birdsall, B M Koshel, Y Hua et al. Electrophoresis, 2013, 34(5):753~760. 

    56. [56]

      C Aydogan, Z E Rassi. J. Chromatogr. A, 2016, 1445:55~61. 

    57. [57]

      Z Lin, J Pang, H Yang et al. Chem. Commun., 2011, 47(34):9675~9677. 

    58. [58]

      X Wang, Y Zheng, C Zhang et al. J. Chromatogr. A, 2012, 1239:56~63. 

    59. [59]

      J Ou, Z Zhang, H Lin et al. Anal. Chim. Acta, 2013, 761:209~216. 

    60. [60]

      Q Yang, D Huang, S Jin et al. Analyst, 2013, 138(17):4752~4755. 

    61. [61]

      Y H Shan, L Z Qiao, X Z Shi et al. J. Chromatogr. A, 2015, 1375:101~109. 

    62. [62]

       

    63. [63]

      J C Zhao, Q Y Zhu, L Y Zhao et al. Analyst, 2016, 141(16):4961~4967. 

    64. [64]

      M Wu, R Wu, Z Zhang et al. Electrophoresis, 2011, 32(1):105~115. 

    65. [65]

      J Ou, Z Liu, H Wang et al. Electrophoresis, 2015, 36(1):62~75. 

    66. [66]

       

    67. [67]

      T Yang, C Ma, H Chen et al. J. Sep. Sci., 2014, 37(5):587~594. 

    68. [68]

      Y F Zhou, N Z Song, H J Zheng et al. New J. Chem., 2015, 39(12):9714~9721. 

    69. [69]

      R F Qi, X J Lv, Q Niu et al. New J. Chem., 2015, 39(8):6323~6331. 

    70. [70]

      Z S Liu, J Liu, Z Y Liu et al. J. Chromatogr. A, 2017, 1498:29~36. 

    71. [71]

      J Bai, Z Liu, H Wang et al. J. Chromatogr. A, 2017, 1498:37~45. 

    72. [72]

      K Nagase, J Kobayashi, A Kikuchi et al. RSC Adv., 2015, 5(81):66155~66167. 

    73. [73]

      H S Wang, X Y Feng, J P Wei. J. Chromatogr. A, 2015, 1409:132~137. 

    74. [74]

      M Sudheendran, S H Eitel, S Naumann et al. New J. Chem., 2014, 38(11):5597~5607. 

    75. [75]

      R Bandari, J Kuballa, M R Buchmeiser. J. Sep. Sci., 2013, 36(7):1169~1175. 

    76. [76]

      R Bandari, M R Buchmeiser. Analyst, 2012, 137(14):3271~3277. 

    77. [77]

      T Zhou, H Yang, Z Jin et al. J. Sep. Sci., 2016, 39(7):1339~1346. 

    78. [78]

      A M Yehia, H M Mohamed. J. Sep. Sci., 2016, 39(11):2114:2122. 

    79. [79]

      T Chaloemsuwiwattanakan, A Sangcakul, C Kitiyakara et al. J. Sep. Sci., 2016, 39(18):3521~3527. 

    80. [80]

      D S Domingues, I D Souza, M E Queiroz. J. Chromatogr. B, 2015, 993/994:26~35.

    81. [81]

      M Mei, X Huang, K Liao et al. Anal. Chim. Acta, 2015, 860:29~36. 

    82. [82]

      H Zhai, Z Su, Z Chen et al. Anal. Chim. Acta, 2015, 865:16~21. 

    83. [83]

      B M Carvalho, L M Carvalho, W F Silva Jr. et al. Food Chem., 2014, 154:308~314. 

    84. [84]

      J Wang, Q Zhao, N Jiang et al. J. Chromatogr. A, 2017, 1485:24~31. 

    85. [85]

      S Eeltink, S Wouters, J L Dores-Sousa et al. J. Chromatogr. A, 2017, 1498:8~21. 

    86. [86]

      J Zemenova, D Sykora, H Adamkova et al. J. Sep. Sci., 2017, 40(5):1032~1039. 

    87. [87]

      H P Jiang, C B Qi, J M Chu et al. Sci. Rep., 2015, 5:7785~7794. 

    88. [88]

      M Catala-Icardo, S Torres-Cartas, S Meseguer-Lloret et al. Anal. Chim. Acta, 2017, 960:160~167. 

    89. [89]

      F Yang, Q Bai, K Zhao et al. Anal. Bioanal. Chem., 2015, 407:1721~1734. 

    90. [90]

      M Ding, Z Wang, R Zheng. Chin. J. Chem., 2010, 28:567~572. 

    91. [91]

      H Sakamaki, T Uchida, L W Lim et al. J. Chromatogr. A, 2015, 1381:125~131. 

    92. [92]

      Y Liu, M M Wang, L F Ai et al. J. Sep. Sci., 2014, 37(13):1648~1655. 

    93. [93]

      J Chen, X Min, P Li et al. Anal. Chim. Acta, 2015, 879:41~47. 

    94. [94]

      Y L Wang, M Mei, X J Huang et al. Anal. Methods, 2015, 7(2):551~559. 

    95. [95]

      Y K Lv, Z Y Guo, J Z Wang et al. Anal. Methods, 2015, 7(4):1563~1571. 

    96. [96]

      Y Shan, X Shi, G Xu. J. Sep. Sci., 2015, 38(6):982~989. 

    97. [97]

      B Sandig, M R Buchmeiser. ChemSusChem, 2016, 6:1~6.

    98. [98]

      T Nema, E C Chan, P C Ho. J. Pharm. Biomed. Anal., 2014, 87:130~141. 

    99. [99]

      F Svec, Y Lv. Anal. Chem., 2015, 87(1):250~273.

  • 加载中
    1. [1]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    2. [2]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    3. [3]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    4. [4]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    5. [5]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    6. [6]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    7. [7]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    8. [8]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    9. [9]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    10. [10]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    11. [11]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    12. [12]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    13. [13]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    14. [14]

      Minghui WuMarkus MühlinghausXuechao LiChaojie XuQiang ChenHaiming ZhangKlaus MüllenLifeng Chi . On-Surface Synthesis of Chevron-Shaped Conjugated Ladder Polymers Consisting of Benzo[a]azulene Units. Acta Physico-Chimica Sinica, 2024, 40(8): 2307024-0. doi: 10.3866/PKU.WHXB202307024

    15. [15]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    16. [16]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    17. [17]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    18. [18]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    19. [19]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    20. [20]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

Metrics
  • PDF Downloads(8)
  • Abstract views(687)
  • HTML views(115)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return