Citation: Zhong Keli, Wang Yutong, Shi Yu, Hou Shuhua, Bian Yanjiang, Tang Lijun. Synthesis of 2-(Benzo[d]thiazol-2-yl)-5-(N, N-diethylamino)phenol Derivative and Its Recognition Performance for H2S[J]. Chemistry, ;2019, 82(6): 510-515. shu

Synthesis of 2-(Benzo[d]thiazol-2-yl)-5-(N, N-diethylamino)phenol Derivative and Its Recognition Performance for H2S

  • Corresponding author: Tang Lijun, ljtang@bhu.edu.cn
  • Received Date: 26 December 2018
    Accepted Date: 26 February 2019

Figures(11)

  • The 2-(benzothiazol-2-yl)-5-(N, N-diethylamino)phenol derivative (probe L) was synthesized using 4-N, N-diethylamino salicylaldehyde as the starting material, and its structure was characterized. In DMSO/PBS (3:7, v/v, pH=7.4) solution, probe L can recognize H2S with high selectivity and fluorescence "turn-on" responding, and fluorescence color was changed from non-fluoresce to blue strong fluorescence by irradiation with a 365 nm UV lamp. The experimental results indicated that the detection limit of probe L is 2.05×10-6mol/L, and the pH range of L recognition for H2S is 6~9. The probe L can be used to detect H2S in real water samples.
  • 加载中
    1. [1]

      S Chen, Z J Chen, W Ren et al. J. Am. Chem. Soc., 2012, 134(23):9589~9592. 

    2. [2]

      K Zhong, L Deng, J Zhao et al. RSC Adv., 2018, 8(42):23924~23929. 

    3. [3]

      V S Lin, W Chen, M Xian et al. Chem. Soc. Rev., 2015, 44(14):4596~4618. 

    4. [4]

      J Peng, C L Teoh, X Zeng et al. Adv. Funct. Mater., 2016, 26(2):191~199.

    5. [5]

      H D Li, Q C Yao, J L Fan et al. Chem. Commun., 2015, 51(90):16225~16228. 

    6. [6]

      P K Mishra, T Saha, P Talukdar. Org. Biomol. Chem., 2015, 13(27):7430~7436. 

    7. [7]

      R Kaushik, A Ghosh, D Amilan Jose. Coordin. Chem. Rev., 2017, 347:141~157. 

    8. [8]

      K Huang, M Liu, X Wang et al. Tetrahed. Lett., 2015, 56(24):3769~3773. 

    9. [9]

       

    10. [10]

      C T Yang, L Chen, S Xu et al. Front. Pharmacol., 2017, 8:664~680. 

    11. [11]

      K Huang, M Liu, Z Liu et al. Dyes Pigm., 2015, 118:88~94. 

    12. [12]

      L Yuan, F Jin, Z Zeng et al. Chem. Sci., 2015, 6(4):2360~2365. 

    13. [13]

      H Zhang, Y Xie, P Wang et al. Talanta, 2015, 135:149~154. 

    14. [14]

      J Lee, Y J Lee, Y J Ahn et al. Sens. Actuat. B, 2018, 256:828~834. 

    15. [15]

      B Zhao, B Yang, X Hu et al. Spectrochim. Acta A, 2018, 199:117~122. 

    16. [16]

      C Wu, X Hu, B Gu et al. Anal. Methods, 2018, 10(6):604~610. 

    17. [17]

      K B Li, F Z Chen, Q H Yin et al. Sens. Actuat. B, 2018, 254:222~226. 

    18. [18]

      J R Hall, M H Schoenfisch. Anal. Chem., 2018, 90(8):5194~5200. 

    19. [19]

      T Xu, N Scafa, L P Xu et al. Analyst, 2016, 141(4):1185~1195. 

    20. [20]

      B Li, L Li, K Wang et al. Anal. Bioanal. Chem., 2017, 409(4):1101~1107.

    21. [21]

      F Yu, X Han, L Chen. Chem. Commun., 2014, 50(82):12234~12249. 

    22. [22]

      H D Li, Q C Yao, J L Fan et al. Chem. Commun., 2015, 51(90):16225~16228. 

    23. [23]

      H Peng, Y Cheng, C Dai et al. Angew. Chem. Int. Ed., 2011, 50(41):9672~9675. 

    24. [24]

      A R Lippert, E J New, C J Chang. J. Am. Chem. Soc., 2011, 133(26):10078~10080. 

    25. [25]

      V S Lin, A R Lippert, C J Chang. PNAS, 2013, 110(18):7131~7135. 

    26. [26]

      K Zheng, W Lin, L Tan. Org. Biomol. Chem., 2012, 10(48):9683~9688. 

    27. [27]

      X Cao, W Lin, K Zheng et al. Chem. Commun., 2012, 48(85):10529~10531. 

    28. [28]

      M D Hammers, M J Taormina, M M Cerda et al. J. Am. Chem. Soc., 2015, 137(32):10216~10223. 

    29. [29]

      W Li, W Sun, X Yu et al. J. Fluoresc., 2013, 23(1):181~186. 

    30. [30]

       

    31. [31]

      L Tang, M Cai, Z Huang et al. Sens. Actuat. B, 2013, 185:188~194. 

    32. [32]

      R Zeng, Q Gao, F Cheng et al. Anal. Bioanal. Chem., 2018, 410(7):2001~2009. 

    33. [33]

      J Wu, Z Ye, F Wu et al. Talanta, 2018, 181:239~247. 

    34. [34]

      D Chen, J Yang, J Dai et al. J. Mater. Chem. B, 2018, 6(32):5248~5255. 

    35. [35]

      C Wang, X Xia, J Luo et al. Dyes Pigm., 2018, 152:85~92. 

    36. [36]

      S Feng, Q Xia, G Feng. Dyes Pigm., 2019, 163:447~453. 

    37. [37]

      W Chen, S Chen, B Zhou et al. Dyes Pigm., 2015, 113:596~601. 

    38. [38]

      K Zhong, J Zhao, X Zhou et al. Chin. J. Chem., 2016, 34(12):1329~1334. 

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    3. [3]

      Shangqian ZhangJiaxuan LiXuan HuZelong ChenJunliang DongChenhao HuShuang ChaoYinghua LvYuxin PeiZhichao Pei . H2S and NIR light-driven nanomotors induce disulfidptosis for targeted anticancer therapy by enhancing disruption of tumor metabolic symbiosis. Chinese Chemical Letters, 2025, 36(1): 110314-. doi: 10.1016/j.cclet.2024.110314

    4. [4]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    5. [5]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    6. [6]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    7. [7]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    8. [8]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    9. [9]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    10. [10]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    13. [13]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

    14. [14]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    15. [15]

      Huakang ZongXinyue LiYanlin ZhangFaxun WangXingxing YuGuotao DuanYuanyuan Luo . Pt/Ti3C2 electrode material used for H2S sensor with low detection limit and high stability. Chinese Chemical Letters, 2025, 36(5): 110195-. doi: 10.1016/j.cclet.2024.110195

    16. [16]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    17. [17]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    18. [18]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    19. [19]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    20. [20]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

Metrics
  • PDF Downloads(5)
  • Abstract views(1264)
  • HTML views(166)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return