Citation: LU Xiao-lin, LIU Zi-kui, MA Su-fang, BAI Xue. Effect of Dy and Y doping on the catalytic performance of CuO/CeZrO2 for the preferential oxidation of CO in H2-rich stream[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(7): 870-875. shu

Effect of Dy and Y doping on the catalytic performance of CuO/CeZrO2 for the preferential oxidation of CO in H2-rich stream

  • Corresponding author: BAI Xue, bai-xue@imut.edu.cn
  • Received Date: 25 December 2015
    Revised Date: 9 March 2016

    Fund Project: The project was supported by the National Natural Science Foundation of China 21263011

Figures(5)

  • CuO/CeZrO2 catalysts doped with different amounts of Dy2O3 and Y2O3 were prepared by the hydrothermal-impregnation method and characterized by XRD, H2-TPR and nitrogen sorption; the effect of Dy and Y doping on the catalytic performance of CuO/CeZrO2 for the preferential oxidation of CO in H2-rich stream was investigated. The results indicate that all the CuO/CeZrO2 catalysts have a fluorite structure; doping with appropriate amounts of Dy2O3 and Y2O3 can improve the interaction between the active component and support, the dispersion of CuO and its reducibility at low temperature, which is effective to enhance the activity of Dy and Y doped CuO/CeZrO2 catalysts in the preferential oxidation of CO. Moreover, the doping with Dy2O3 and Y2O3 can also reduce the inhibition effect of CO2 on CuO/CeZrO2 in CO oxidation and then improve its catalytic stability.
  • 加载中
    1. [1]

      SHARAF O Z, ORHAN M F. An overview of fuel cell technology. Fundamentals and applications[J]. Renewable Sustainable Energy Rev, 2014,32:810-853. doi: 10.1016/j.rser.2014.01.012

    2. [2]

      NASEF M M. Radiation-grafted membranes for polymer electrolyte fuel cells: Current trends and future directions[J]. Chem Rev, 2014,114:12278-12329. doi: 10.1021/cr4005499

    3. [3]

      AHLUWALIA R K, WANG X H. Fuel cell systems for transportation: Status and trends[J]. J Power Sources, 2008,177(1):167-176. doi: 10.1016/j.jpowsour.2007.10.026

    4. [4]

      WANG Yan, ZHANG Wen-li, WANG Qi, WANG Peng-zhan, SU Hai-quan, ZENG Shang-hong. Research progress of CeO2/CuO catalysts for preferential oxidation of CO in H2[J]. Prog Chem, 2011,30(6):1224-1229.

    5. [5]

      PILASOMBAT R, DALY H, GOGUET A, BREENA J P, BURCHA R, HARDACREA C, THOMPSETTB D. Investigation of the effect of the preparation method on the activity and stability of Au/CeZrO4 catalysts for the low temperature water gas shift reaction[J]. Catal Today, 2012,180:131-138. doi: 10.1016/j.cattod.2011.04.053

    6. [6]

      LIU W, FLYTZANL-STEPHANAPOULOS M. Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts: Ⅰ. Catalyst composition and activity[J]. J Catal, 1995,153(2):304-316. doi: 10.1006/jcat.1995.1132

    7. [7]

      LIU W, FLYTZANL-STEPHANAPOULOS M. Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts: Ⅱ. Catalyst characterization and reaction-kinetics[J]. J Catal, 1995,153(2):317-332. doi: 10.1006/jcat.1995.1133

    8. [8]

      FORNASIERO P, FONDA E, DI MONTE R, VLAIC G, KAŠPAR J, GRAZIANI M. Relationships between structural/textural properties and redox behavior in Ce0.6Zr0.4O2 mixed oxides[J]. J Catal, 1999,187:177-185. doi: 10.1006/jcat.1999.2589

    9. [9]

      WANG S P, WANG X Y, HUANG J. The catalytic activity for CO oxidation of CuO supported on Ce0.8Zr0.2O2 prepared via citrate method[J]. Catal Commun, 2007,8:231-236. doi: 10.1016/j.catcom.2006.06.006

    10. [10]

      VIDMAR P, FORNASIERO P, KASPAR J, GUBITOSA G, GRAZIANI M. Effects of trivalent dopants on the redox properties of Ce0.6Zr0.4O2 mixed oxide[J]. J Catal, 1997,171(1):160-168. doi: 10.1006/jcat.1997.1784

    11. [11]

      ZHOU Ren-xian, DING Yun-jie, JIANG Xiao-yuan, ZHENG Xiao-ming. Surface oxygen properties of Pt/Al2O3 doped ZrO2 and study on CO oxidation[J]. J Mol Catal, 1996,10(3):226-230.

    12. [12]

      ZHU Peng-fei. Study on the preparation of high performance copper cerium catalyst and the interaction between copper and cerium[D]. Hangzhou: Zhejiang University, 2008.

    13. [13]

      ZHENG Xiu-cheng, ZHANG Xiao-li, WANG Shu-rong, YU Li-hua, WANG Xiang-yu, WU Shi-hua. Low temperature oxidation of CO over different CuO/CeO2 catalysts[J]. Chin J Catal, 2005,26(11):971-976.  

    14. [14]

      WANG S P. An investigation of catalytic activity for CO oxidation of CuO/CexZr1-xO2 catalysts[J]. Catal Lett, 2008,121(1):70-76.

    15. [15]

      FAN Qi-yuan, BAI Xue, ZENG Shang-hong. CeO2/ CuO catalysts prepared by surfactant template method for CO preferential oxidation in hydrogen rich atmosphere[J]. J Fuel Chem Technol, 2014,42(5):603-608.  

    16. [16]

      ZOU Han-bo, DONG Xin-fa, LIN Wei-ming. Study on selective oxidation of CO over Non metallic catalyst[J]. Nat Gas Ind, 2004,29(6):10-13.

    17. [17]

      SEDMAK G, HOEVAR S, LEVEC J. Kinetics of selective CO oxidation in excess of H2 over the nanostructured Cu0.1Ce0.9O2-y catalyst[J]. J Catal, 2003,213(2):135-150. doi: 10.1016/S0021-9517(02)00019-2

    18. [18]

      SHAO Jian-jun, ZHU Xi, SHEN Wen-jie. Redox properties of Co3O4/CeO2 and the effect of reaction conditions on the CO oxidation[J]. J Fuel Chem Technol, 2012,40(1):75-79.  

    19. [19]

      BENEDETTO A D, LANDIB G, LISI L, RUSSO G. Role of CO2 on CO preferential oxidation over CuO/CeO2 catalyst[J]. Appl Catal B: Environ, 2013,142:169-177.

    20. [20]

      ZHANG Li-feng, LI Jin-lin. La and Y modified CuO-CeO2 catalysts on selective oxidation of carbon monoxide in hydrogen rich gases[J]. Tianjin Chem Ind, 2009,23(2):29-31.  

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Liangliang Song Haoyan Liang Shunqing Li Bao Qiu Zhaoping Liu . 超高比能电池高锰富锂层状氧化物正极材料面临的挑战与解决策略. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-. doi: 10.1016/j.actphy.2025.100085

    3. [3]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    4. [4]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    5. [5]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    6. [6]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    7. [7]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    8. [8]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    9. [9]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    13. [13]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    14. [14]

      Mingjie Lei Wenting Hu Kexin Lin Xiujuan Sun Haoshen Zhang Ye Qian Tongyue Kang Xiulin Wu Hailong Liao Yuan Pan Yuwei Zhang Diye Wei Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083

    15. [15]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    16. [16]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    17. [17]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    18. [18]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    19. [19]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    20. [20]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

Metrics
  • PDF Downloads(0)
  • Abstract views(1287)
  • HTML views(105)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return