Citation: LU Xiao-lin, LIU Zi-kui, MA Su-fang, BAI Xue. Effect of Dy and Y doping on the catalytic performance of CuO/CeZrO2 for the preferential oxidation of CO in H2-rich stream[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(7): 870-875. shu

Effect of Dy and Y doping on the catalytic performance of CuO/CeZrO2 for the preferential oxidation of CO in H2-rich stream

  • Corresponding author: BAI Xue, bai-xue@imut.edu.cn
  • Received Date: 25 December 2015
    Revised Date: 9 March 2016

    Fund Project: The project was supported by the National Natural Science Foundation of China 21263011

Figures(5)

  • CuO/CeZrO2 catalysts doped with different amounts of Dy2O3 and Y2O3 were prepared by the hydrothermal-impregnation method and characterized by XRD, H2-TPR and nitrogen sorption; the effect of Dy and Y doping on the catalytic performance of CuO/CeZrO2 for the preferential oxidation of CO in H2-rich stream was investigated. The results indicate that all the CuO/CeZrO2 catalysts have a fluorite structure; doping with appropriate amounts of Dy2O3 and Y2O3 can improve the interaction between the active component and support, the dispersion of CuO and its reducibility at low temperature, which is effective to enhance the activity of Dy and Y doped CuO/CeZrO2 catalysts in the preferential oxidation of CO. Moreover, the doping with Dy2O3 and Y2O3 can also reduce the inhibition effect of CO2 on CuO/CeZrO2 in CO oxidation and then improve its catalytic stability.
  • 加载中
    1. [1]

      SHARAF O Z, ORHAN M F. An overview of fuel cell technology. Fundamentals and applications[J]. Renewable Sustainable Energy Rev, 2014,32:810-853. doi: 10.1016/j.rser.2014.01.012

    2. [2]

      NASEF M M. Radiation-grafted membranes for polymer electrolyte fuel cells: Current trends and future directions[J]. Chem Rev, 2014,114:12278-12329. doi: 10.1021/cr4005499

    3. [3]

      AHLUWALIA R K, WANG X H. Fuel cell systems for transportation: Status and trends[J]. J Power Sources, 2008,177(1):167-176. doi: 10.1016/j.jpowsour.2007.10.026

    4. [4]

      WANG Yan, ZHANG Wen-li, WANG Qi, WANG Peng-zhan, SU Hai-quan, ZENG Shang-hong. Research progress of CeO2/CuO catalysts for preferential oxidation of CO in H2[J]. Prog Chem, 2011,30(6):1224-1229.

    5. [5]

      PILASOMBAT R, DALY H, GOGUET A, BREENA J P, BURCHA R, HARDACREA C, THOMPSETTB D. Investigation of the effect of the preparation method on the activity and stability of Au/CeZrO4 catalysts for the low temperature water gas shift reaction[J]. Catal Today, 2012,180:131-138. doi: 10.1016/j.cattod.2011.04.053

    6. [6]

      LIU W, FLYTZANL-STEPHANAPOULOS M. Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts: Ⅰ. Catalyst composition and activity[J]. J Catal, 1995,153(2):304-316. doi: 10.1006/jcat.1995.1132

    7. [7]

      LIU W, FLYTZANL-STEPHANAPOULOS M. Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts: Ⅱ. Catalyst characterization and reaction-kinetics[J]. J Catal, 1995,153(2):317-332. doi: 10.1006/jcat.1995.1133

    8. [8]

      FORNASIERO P, FONDA E, DI MONTE R, VLAIC G, KAŠPAR J, GRAZIANI M. Relationships between structural/textural properties and redox behavior in Ce0.6Zr0.4O2 mixed oxides[J]. J Catal, 1999,187:177-185. doi: 10.1006/jcat.1999.2589

    9. [9]

      WANG S P, WANG X Y, HUANG J. The catalytic activity for CO oxidation of CuO supported on Ce0.8Zr0.2O2 prepared via citrate method[J]. Catal Commun, 2007,8:231-236. doi: 10.1016/j.catcom.2006.06.006

    10. [10]

      VIDMAR P, FORNASIERO P, KASPAR J, GUBITOSA G, GRAZIANI M. Effects of trivalent dopants on the redox properties of Ce0.6Zr0.4O2 mixed oxide[J]. J Catal, 1997,171(1):160-168. doi: 10.1006/jcat.1997.1784

    11. [11]

      ZHOU Ren-xian, DING Yun-jie, JIANG Xiao-yuan, ZHENG Xiao-ming. Surface oxygen properties of Pt/Al2O3 doped ZrO2 and study on CO oxidation[J]. J Mol Catal, 1996,10(3):226-230.

    12. [12]

      ZHU Peng-fei. Study on the preparation of high performance copper cerium catalyst and the interaction between copper and cerium[D]. Hangzhou: Zhejiang University, 2008.

    13. [13]

      ZHENG Xiu-cheng, ZHANG Xiao-li, WANG Shu-rong, YU Li-hua, WANG Xiang-yu, WU Shi-hua. Low temperature oxidation of CO over different CuO/CeO2 catalysts[J]. Chin J Catal, 2005,26(11):971-976.  

    14. [14]

      WANG S P. An investigation of catalytic activity for CO oxidation of CuO/CexZr1-xO2 catalysts[J]. Catal Lett, 2008,121(1):70-76.

    15. [15]

      FAN Qi-yuan, BAI Xue, ZENG Shang-hong. CeO2/ CuO catalysts prepared by surfactant template method for CO preferential oxidation in hydrogen rich atmosphere[J]. J Fuel Chem Technol, 2014,42(5):603-608.  

    16. [16]

      ZOU Han-bo, DONG Xin-fa, LIN Wei-ming. Study on selective oxidation of CO over Non metallic catalyst[J]. Nat Gas Ind, 2004,29(6):10-13.

    17. [17]

      SEDMAK G, HOEVAR S, LEVEC J. Kinetics of selective CO oxidation in excess of H2 over the nanostructured Cu0.1Ce0.9O2-y catalyst[J]. J Catal, 2003,213(2):135-150. doi: 10.1016/S0021-9517(02)00019-2

    18. [18]

      SHAO Jian-jun, ZHU Xi, SHEN Wen-jie. Redox properties of Co3O4/CeO2 and the effect of reaction conditions on the CO oxidation[J]. J Fuel Chem Technol, 2012,40(1):75-79.  

    19. [19]

      BENEDETTO A D, LANDIB G, LISI L, RUSSO G. Role of CO2 on CO preferential oxidation over CuO/CeO2 catalyst[J]. Appl Catal B: Environ, 2013,142:169-177.

    20. [20]

      ZHANG Li-feng, LI Jin-lin. La and Y modified CuO-CeO2 catalysts on selective oxidation of carbon monoxide in hydrogen rich gases[J]. Tianjin Chem Ind, 2009,23(2):29-31.  

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    3. [3]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    4. [4]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    5. [5]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    6. [6]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    7. [7]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    8. [8]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    9. [9]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    10. [10]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    11. [11]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    14. [14]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    15. [15]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    16. [16]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    17. [17]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    18. [18]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    19. [19]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    20. [20]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

Metrics
  • PDF Downloads(0)
  • Abstract views(1372)
  • HTML views(105)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return