Citation: LIU Yang, HE Kun, LI Xian-qing, HAN Rui, WANG Zhe, XU Hong-wei. Performance of various catalysts in hydropyrolysis of organic matters and reaction mechanisms[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(1): 53-59. shu

Performance of various catalysts in hydropyrolysis of organic matters and reaction mechanisms

  • Corresponding author: LI Xian-qing, lixq@cumtb.edu.cn
  • Received Date: 28 July 2015
    Revised Date: 9 November 2015

    Fund Project: The project was supported by the National Natural Science Foundation of China 41572125National Special Fund for Research in the Public Interest 201311022Important National Science & Technology Specific Projects of China during the 12th Five-year Plan Period 2011ZX05007-002Independent Scientific Research Project of State Key Lab-oratory of Coal Resources and Safe Mining SKLCRSM10B04Important National Science & Technology Specific Projects of China during the 12th Five-year Plan Period 2011ZX05033-004

Figures(6)

  • The hydropyrolysis of organic matters was comparatively conducted over various catalysts including ZnCl2, NiCl2, Fe2O3, NaY and MoS2 and the reaction mechanisms over different catalysts were then investigated. The results indicate that the yield and composition of liquid products from hydropyrolysis are related to the type of catalyst, though various catalysts do not have significant difference in the product biomarker parameters. Meanwhile, for the organic matters with different maturities and types, various catalysts are also quite different in their actual performance. The element analysis, infrared spectra and X-ray diffractograms of the solid residues illustrate that various catalysts are obviously different in the catalytic reaction mechanism. In comparison with NiCl2, mass transfer is an important factor in the ZnCl2 system, besides the catalytic cracking and catalytic hydrogenation. With Fe2O3 as the catalyst, the formation of H free radical by the adsorption of H2 at the surface active O sites may promote the hydrogenation of organic matters. MoS2 as the catalyst may involve two mechanisms, viz., the hydrogenation over transition metal Mo and the initiation of free radicals from H2S intermediates.
  • 加载中
    1. [1]

      LI Bao-qing. Hydropyrolysis of Chinese coals Ⅱ. Thermogravimetric study on catalytic and non-catalytic hydropyrolysis of Xianfeng lignite[J]. J Fuel Chem Technol, 1995,23(2):186-191.  

    2. [2]

      LI Bao-qing. Hydropyrolysis of Chinese coals Ⅲ. Catalytic and non-catalytic hydropyrolysis under H2-CH4 of Shenfu bituminous coal[J]. J Fuel Chem Technol, 1995,23(2):192-196.  

    3. [3]

      PETERS K E, MOLDOWAN J M. The bionmarker guide: Interpreting molecular fossoils in petroleum and ancient sediments[M]. New Jersey: Prentice Hall, 1993: 170-176.

    4. [4]

      FU Jia-mo, SHENG Guo-ying, XU Jia-you, JIA Rong-fen, FAN Shan-fa, PENG Ping-an, EGLINTON G, GOWAR A P. Application of biomarker compounds in assessment of paleoenvironxnents of Chinese terrestrial sediments[J]. Geochimica, 1991,20(1):1-12.  

    5. [5]

      LOVE G D, SNAPE C E, CAM A D. Release of covalently-bound alkane biomarkers in high yields from kerogen via catalytic hydropyrolysis[J]. Org Geochem, 1995,23(10):981-986. doi: 10.1016/0146-6380(95)00075-5

    6. [6]

      IKENAGA N, KAN-NAN S, SAKODA T, SUZUKI T. Coal hydroliquefaction using highly dispersed catalyst precursors[J]. Catal Today, 1997,39(1/2):99-109.  

    7. [7]

      INUKAI Y. Hydroliquefaction of Illinois NO.6 coal with petroleum atmospheric residue using oil-soluble molybdenum catalyst[J]. Fuel Process Technol, 1995,43(2):157-167. doi: 10.1016/0378-3820(95)00017-2

    8. [8]

      YUE Chang-tao, LI Shu-yuan, XU Ming, ZHONG Ning-ning. Simulation experiments on the TSR system of diesel and mangnesium sulfate[J]. Pet Geol Exp, 2010,32(6):610-614.  

    9. [9]

      ROCHA J D, BROWN S D, LOVE G D, SNAPE C E. Hydropyrolysis: A versatile technique for solid fuel liquefaction, sulfur speciation and biomarker release[J]. J Anal Appl Pyrolysis, 1997,40-41:91-103. doi: 10.1016/S0165-2370(97)00041-7

    10. [10]

      RUSSELL C A, SNAPE C E, MEREDITH W. The potential of bound biomarker prfiles released from catalytic hydropymlysis to reconstruction basin charging history for oils[C]. Abstract for 21th International Meeting on Organic Geochemistry K rakow. 2003: 160-161.

    11. [11]

      LOCKHART R S, MEREDIT H W, LOVE G D. Release of bound aliphatic biomarkers via hydropyrolysis from Type Ⅱ kerogen at high maturity[J]. Org Geochem, 2008,39(8):1119-1124. doi: 10.1016/j.orggeochem.2008.03.016

    12. [12]

      HE K, ZHANG S C, MI J K. Mechanism of catalytic hydropyrolysis of sedimentary organic matter with MoS2[J]. Pet Sci, 2011,8(2):134-142. doi: 10.1007/s12182-011-0126-0

    13. [13]

      ZELENSKI C M, DORHOUT P K. Template synthesis of near-monodisperse microscale nanofibers and nanotubes of MoS2[J]. J Am Chem Soc, 1998,120(4):734-742. doi: 10.1021/ja972170q

    14. [14]

      FARAG H, EI-HEDAWY A, SAKAISHI K, KISHIDA M, MOCHIDA I. Catalytic activity of synthesized nanosized molybdenum disulfide for the hydrodesulfurization of dibenzthiophene: Effect of H2S partial pressure[J]. Appl Catal B: Environ, 2009,91(1/2):189-197.

    15. [15]

      SONG J H, CHEN P L, KIM S H. Catalytic cracking of n-hexane over MoO2[J]. J Mol Catal A, 2002,184(1/2):197-202.  

    16. [16]

      PINTO F, GULYURTLU I, LOBO L S, CABRITA I. The effect of catalyst blending on coal hydropyrolysis[J]. Fuel, 1999,78(7):761-768. doi: 10.1016/S0016-2361(98)00212-9

    17. [17]

      SONG C S, NOMURA M, MIYAKE M. Coal hydroliquefaction using MoCl3-and NiCl2-containing salts as catalysts: Difference in catalysis between solid and molten catalysis[J]. Fuel, 1986,65(7):922-926. doi: 10.1016/0016-2361(86)90199-7

    18. [18]

      WANG L, CHEN P. Mechanism study of iron-based catalysts in co-liquefaction of coal with waste plastics[J]. Fuel, 2002,81(6):811-815. doi: 10.1016/S0016-2361(01)00201-0

    19. [19]

      HE K, DONG Y M, LI Z. Catalytic ozonation of phenol in water with natural brucite and magnesia[J]. J Hazard Mater, 2008,159(2/3):587-592.  

    20. [20]

      HE K, DONG Y M, LIN Y. A facile hydrothermal method to synthesize nanosized Co3O4/CeO2 and study of its catalytic characteristic in catalytic ozonation of phenol[J]. Catal Lett, 2009,133(1):209-213.

    21. [21]

      PRIYANTO U, SAKANISHI K, OKUMA O, MOCHIDA I. Liquefaction of Tanito Harum coal with bottom recycle using FeNi and FeMoNi catalysts supported on carbon nanoparticles[J]. Fuel Process Technol, 2002,79(1):51-62. doi: 10.1016/S0378-3820(02)00101-7

    22. [22]

      SONG C, SAINI A K, YONEYAMA Y. A new process for catalytic liquefaction of coal using dispersed MoS2 catalytic generated in situ with added H2O[J]. Fuel, 2000,79(3/4):249-261.  

    23. [23]

      BOONE W P, EKERDT J G. Hydrodesulfurization studies with a single-layer molybdenum disulfite catalyst[J]. J Catal, 2000,193(1):96-102. doi: 10.1006/jcat.2000.2884

    24. [24]

      ZHANG T W, AMRANI A, ELLIS G S, MA Q S, TANG Y C. Experimental investigation on thermochemical sulfate reduction by H2S initiation[J]. Geochim Cosmochim Acta, 2008,72(14):3518-3530. doi: 10.1016/j.gca.2008.04.036

  • 加载中
    1. [1]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    2. [2]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    3. [3]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    4. [4]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    5. [5]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    6. [6]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    7. [7]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    8. [8]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    9. [9]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    10. [10]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    11. [11]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    12. [12]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    13. [13]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    14. [14]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    15. [15]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    16. [16]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    19. [19]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    20. [20]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

Metrics
  • PDF Downloads(2)
  • Abstract views(1984)
  • HTML views(1001)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return