Citation: DONG Shi-lin, SU Ya-xin, LIU Xin, LI Qian-cheng, YUAN Min-hao, ZHOU Hao, DENG Wen-yi. Experimental study on selective catalytic reduction of NO by C3H6 over Fe/Ti-PILC catalysts[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(10): 1231-1239. shu

Experimental study on selective catalytic reduction of NO by C3H6 over Fe/Ti-PILC catalysts

  • Corresponding author: SU Ya-xin, suyx@dhu.edu.cn
  • Received Date: 8 May 2018
    Revised Date: 9 August 2018

    Fund Project: Jiangsu Province Prospective Joint Research Projects BY2015032-02the National Natural Science Foundation of China 51278095The project was supported by the National Natural Science Foundation of China (51278095) and Jiangsu Province Prospective Joint Research Projects (BY2015032-02)

Figures(7)

  • Ti-pillared interlayer clay (PILC)-based catalysts ion exchanged with Fe were prepared and used for selective catalytic reduction of NOx using propylene as the reducing agent under oxygen-rich conditions. The relationship between structure and properties of the catalysts was studied using N2-adsorption/desorption, XRD, UV-vis, H2-TPR, and Py-FTIR. The results show that the prepared 19Fe/Ti-PILC catalyst can achieve complete removal of NO at 400 ℃, and N2 selectivity can reach over 90% and has better resistance to water vapor and SO2. N2-isothermal adsorption/desorption and XRD results show that structure of montmorillonite is opened, cross-linked pillars are effective, and a large specific surface area and pore volume are formed. UV-vis results show that the denitrification activity of the catalyst is related to content of oligomeric FexOy. Py-FTIR results show that both Lewis acid and Brønsted acid are presented on the catalyst surface. Fe3+ loading into the pillared clay can significantly increase the Lewis acid content. Lewis acid is one of the influencing factors on the denitrification activity of the catalyst. H2-TPR indicates that the catalyst has a strong reduction ability at about 400 ℃, and the reduction ability of the catalyst is mainly represented by the reduction of Fe3+→Fe2+.
  • 加载中
    1. [1]

      IWAMOTO M, YAHIRO H, YU U Y. Selective reduction of NO by lower hydrocarbons in the presence of O2 and SO2 over copper ion-exchanged zeolites[J]. Catal, 1990,32(6):430-433.  

    2. [2]

      HELD W, KOENIG A, RICHTER T, PUPPE L. Catalytic NOx reduction in net oxidizing exhaust gas[J]. SAE Trans, 1990,99(4):209-216.  

    3. [3]

      ZHOUs Hao, SU Ya-xin, DENG Wen-yi, ZHONG Fang-chuan. A review of HC-SCR over metal oxides-based catalysts[J]. Environ Sci Technol, 2016,39(1):93-100.  

    4. [4]

      WANG Qi-yin, WEN Yan-bing, DONG Xin-fa, LIN Wei-ming. Crosslinked clay synthesis and its application in selective catalytic reduction of NOx with C3H6[J]. J Chem Eng Chin Univ, 2006,20(4):598-603. doi: 10.3321/j.issn:1003-9015.2006.04.019

    5. [5]

      YASHNIK S A, SALNIKOV A V, VASENIN N T, ANUFRIENKO V F, ISMAGILOV Z R. Regulation of the copper-oxide cluster structure and DeNOx activity of Cu-ZSM-5 catalysts by variation of OH/Cu2+[J]. Catal Today, 2012,197(1):214-227. doi: 10.1016/j.cattod.2012.08.033

    6. [6]

      KUMAR P A, REDDY M P, JU LK, HYUN-SOOK B, PHIL H H. Low temperature propylene SCR of NO by copper alumina catalyst[J]. J Mol Catal A:Chem, 2008,291(1/2):66-74.  

    7. [7]

      LONG R Q, CHANG M T, YANG R T. Enhancement of activities by sulfation on Fe-exchanged TiO2-pillared clay for selective catalytic reduction of NO by ammonia[J]. Appl Catal B:Environ, 2001,33(2):97-107. doi: 10.1016/S0926-3373(01)00173-4

    8. [8]

      VAUGHAN D E W, LUSSIER R J, MAGEE J S. Pillared interlayered clay materials useful as catalysts and sorbents: CA, US4176090[P]. 1979.

    9. [9]

      YANG R T, THARAPPIWATTANANON N, LONG R Q. Ion-exchanged pillared clays for selective catalytic reduction of NO by ethylene in the presence of oxygen[J]. Appl Catal B:Environ, 1998,19(3/4):289-304.  

    10. [10]

      VALVERDE J L, LUCAS A D, SÁNCHEZ P, DORADO F, ROMERO A. Cation exchanged and impregnated ti-pillared clays for selective catalytic reduction of NOx by propylene[J]. Appl Catal B:Environ, 2003,43(1):43-56. doi: 10.1016/S0926-3373(02)00274-6

    11. [11]

      LU G, LI X Y, QU Z P, ZHAO Q D, ZHAO L, CHEN G H. Copper-ion exchanged Ti-pillared clays for selective catalytic reduction of NO by propylene[J]. Chem Eng J, 2011,168(3):1128-1133. doi: 10.1016/j.cej.2011.01.095

    12. [12]

      DOU Yi-feng, SU Ya-xin, LU Zhe-xing, ZHOU Hao, DENG Wen-yi. Experimental study of NO reduction by ethane over iron[J]. J Fuel Chem Technol, 2015,43(10):1273-1280. doi: 10.3969/j.issn.0253-2409.2015.10.017

    13. [13]

      LIANG Jun-qing, SU Ya-xin, ZHOU Hao, DENG Wen-yi. Performance and mechanism of NO reduction by iron combined with propene[J]. J Fuel Chem Technol, 2016,44(8):977-984. doi: 10.3969/j.issn.0253-2409.2016.08.011

    14. [14]

      SU Ya-xin, SU A-long, REN Li-ming, DENG Wen-yi. Effect of SO2 on NO reduction by methane over iron[J]. J Fuel Chem Technol, 2014,42(3):377-384.  

    15. [15]

      ZHOU Hao, SU Ya-xin, QI Yue-zhou, LU Zhe-xing, DENG Wen-yi. Effect of water vapor on NO reduction by methane over iron[J]. J Fuel Chem Technol, 2014,42(11):1378-1386. doi: 10.3969/j.issn.0253-2409.2014.11.016

    16. [16]

      QIAN Wen-yan, SU Ya-xin, YANG Xi, YUAN Min-hao, DENG Wen-yi, ZHAO Bing-tao. Experimental study on selective catalytic reduction of NO with propene over iron based catalysts supported on aluminum pillared clays[J]. J Fuel Chem Technol, 2017,45(12):1499-1507. doi: 10.3969/j.issn.0253-2409.2017.12.012

    17. [17]

      YE Qing, YAN Li-na, HUO Fei-fei, WANG Hai-ping, CHENG Shui-yuan, KANG Tian-fang. Cu-supportedon Fe-pillared sepiolite:Characterization and selective catalytic reduction(SCR)of NO by propene[J]. Acta Chim Sin, 2011,69(13):1524-1532.  

    18. [18]

      YANG T T, BI H T, CHENG X. Effects of O2, CO2 and H2O on NOx adsorption and selective catalytic red uction over Fe/ZSM-5[J]. Appl Catal B:Environ, 2011,102(1/2):163-171.

    19. [19]

      MARTÍNEZ-HERNÁNDEZ A, FUENTES G A. Redistribution of cobalt species in Co-ZSM-5 during operation under wet conditions in the reduction of NOx by propane[J]. Appl Catal B:Environ, 2005,57(3):167-174. doi: 10.1016/j.apcatb.2004.10.018

    20. [20]

      KOMVOKIS V G, ILIOPOULOU E F, VASALOS I A, TRIANTAFYLLIDIS K S, MARSHALL C L. Development of optimized Cu-ZSM-5 deNOx catalytic materials both for HC-SCR applications and as FCC catalytic additives[J]. Appl Catal A:Environ, 2007,325(2):345-352. doi: 10.1016/j.apcata.2007.02.035

    21. [21]

      KIM B S, LEE S H, PARK Y T, HAM S W, CHAE H J, NAM I S. Selective catalytic reduction of NOx, by propene over copper-exchanged pillared clays[J]. Korean J Chem Eng, 2001,18(5):704-710. doi: 10.1007/BF02706390

    22. [22]

      LONG R Q, YANG R T. Selective catalytic reduction of NO with ammonia over V2O5doped TiO2 pillared clay catalysts[J]. Appl Catal B:Environ, 2000,24(1):13-21. doi: 10.1016/S0926-3373(99)00092-2

    23. [23]

      GREGG S J, SING K S W. Adsorption, Surface Area and Porosity[M]. New York:Academic Press Inc, 1982.

    24. [24]

      LONG R Q, YANG R T. Selective catalytic reduction of nitrogen oxides by ammonia over Fe3+-exchanged TiO2-pillared clay catalysts[J]. J Catal, 1999,186(2):254-268. doi: 10.1006/jcat.1999.2558

    25. [25]

      CHMIELARZ L, PIWOWARSKA Z, KUŚTROWSKI P, WEGRZYN A, GIL B, KOWALCZYK A, DUDEK B, DZIEMBAJ R, MICHALIK M. Comparison study of titania pillared interlayered clays and porous clay heterostructures modified with copper and iron as catalysts of the DeNOx process[J]. Appl Clay Sci, 2011,53(2):164-173. doi: 10.1016/j.clay.2010.12.009

    26. [26]

      SHEN Bo-xiong, MA Hong-qing, YANG Xiao-yan, YAO Yan. Study on preparation, characterization and de-NO activity of Mn-CeOx/Ti-PILC[J]. J Fuel Chem Technol, 2012,40(5):615-620. doi: 10.3969/j.issn.0253-2409.2012.05.017

    27. [27]

      OLIVEIRA L C A, RIOS R V R A, FABRIS J D, SAPAG K, GARG V K, LAGO R M. Clay-iron oxide magnetic composites for the adsorption of contaminants in water[J]. Appl Clay Sci, 2003,22(4):169-177. doi: 10.1016/S0169-1317(02)00156-4

    28. [28]

      KUMAR M S, SCHWIDDER M, GRÜNERT W, BRUCKNER A. On the nature of different iron sites and their catalytic role in Fe-ZSM-5 DeNOx, catalysts:New insights by a combined EPR and UV/VIS spectroscopic approach[J]. J Catal, 2004,227(2):384-397. doi: 10.1016/j.jcat.2004.08.003

    29. [29]

      BRANDENBERGER S, KRÖCHER O, WOKAUN A, TISSLER A, ALTHOFF R. The role of Brønsted acidity in the selective catalytic reduction of NO with ammonia over Fe-ZSM-5[J]. J Catal, 2009,268(2):297-306. doi: 10.1016/j.jcat.2009.09.028

    30. [30]

      DATKA J, TUREK A M, JEHNG J M, WACHS I E. Acidic properties of supported niobium oxide catalysts:An infrared spectroscopy investigation[J]. J Catal, 1992,135(135):186-199.  

    31. [31]

      SULTANA A, HANEDA M, FUJITANI T, HAMADA H. Influence of Al2O3 support on the activity of Ag/Al2O3 catalysts for SCR of NO with decane[J]. Catal Lett, 2007,114(1):96-102.  

    32. [32]

      CHMIELARZ L, PIWOWARSKA Z, KUŚTROWSKIP , WEGRZYN A, GIL B, KOWALCZYK A, DUDEK B, DZIEMBAJ R, MICHALIK M. Comparison study of titania pillared interlayered clays and porous clay heterostructures modified with copper and iron as catalysts of the DeNOx process[J]. Appl Clay Sci, 2011,53(2):164-173. doi: 10.1016/j.clay.2010.12.009

    33. [33]

      TOLEDO-ANTONIO J A, CORTÉS-JÁCOME M A, NAVARRETE J, ANGELES-CHAVEZ C, LOPEZ-SALINAS E, RENDON-RIVERA A. Morphology induced CO, pyridine and lutidine adsorption sites on TiO2:Nanoparticles, nanotubes and nanofibers[J]. Catal Today, 2010,155(3/4):247-254.  

  • 加载中
    1. [1]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    2. [2]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    3. [3]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    4. [4]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    5. [5]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    6. [6]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    7. [7]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    8. [8]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    9. [9]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    10. [10]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    11. [11]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    12. [12]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    13. [13]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    14. [14]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    15. [15]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    16. [16]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    17. [17]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    18. [18]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    19. [19]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    20. [20]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

Metrics
  • PDF Downloads(7)
  • Abstract views(992)
  • HTML views(93)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return