Experimental study on selective catalytic reduction of NO by C3H6 over Fe/Ti-PILC catalysts
- Corresponding author: SU Ya-xin, suyx@dhu.edu.cn
Citation:
DONG Shi-lin, SU Ya-xin, LIU Xin, LI Qian-cheng, YUAN Min-hao, ZHOU Hao, DENG Wen-yi. Experimental study on selective catalytic reduction of NO by C3H6 over Fe/Ti-PILC catalysts[J]. Journal of Fuel Chemistry and Technology,
;2018, 46(10): 1231-1239.
IWAMOTO M, YAHIRO H, YU U Y. Selective reduction of NO by lower hydrocarbons in the presence of O2 and SO2 over copper ion-exchanged zeolites[J]. Catal, 1990,32(6):430-433.
HELD W, KOENIG A, RICHTER T, PUPPE L. Catalytic NOx reduction in net oxidizing exhaust gas[J]. SAE Trans, 1990,99(4):209-216.
ZHOUs Hao, SU Ya-xin, DENG Wen-yi, ZHONG Fang-chuan. A review of HC-SCR over metal oxides-based catalysts[J]. Environ Sci Technol, 2016,39(1):93-100.
WANG Qi-yin, WEN Yan-bing, DONG Xin-fa, LIN Wei-ming. Crosslinked clay synthesis and its application in selective catalytic reduction of NOx with C3H6[J]. J Chem Eng Chin Univ, 2006,20(4):598-603. doi: 10.3321/j.issn:1003-9015.2006.04.019
YASHNIK S A, SALNIKOV A V, VASENIN N T, ANUFRIENKO V F, ISMAGILOV Z R. Regulation of the copper-oxide cluster structure and DeNOx activity of Cu-ZSM-5 catalysts by variation of OH/Cu2+[J]. Catal Today, 2012,197(1):214-227. doi: 10.1016/j.cattod.2012.08.033
KUMAR P A, REDDY M P, JU LK, HYUN-SOOK B, PHIL H H. Low temperature propylene SCR of NO by copper alumina catalyst[J]. J Mol Catal A:Chem, 2008,291(1/2):66-74.
LONG R Q, CHANG M T, YANG R T. Enhancement of activities by sulfation on Fe-exchanged TiO2-pillared clay for selective catalytic reduction of NO by ammonia[J]. Appl Catal B:Environ, 2001,33(2):97-107. doi: 10.1016/S0926-3373(01)00173-4
VAUGHAN D E W, LUSSIER R J, MAGEE J S. Pillared interlayered clay materials useful as catalysts and sorbents: CA, US4176090[P]. 1979.
YANG R T, THARAPPIWATTANANON N, LONG R Q. Ion-exchanged pillared clays for selective catalytic reduction of NO by ethylene in the presence of oxygen[J]. Appl Catal B:Environ, 1998,19(3/4):289-304.
VALVERDE J L, LUCAS A D, SÁNCHEZ P, DORADO F, ROMERO A. Cation exchanged and impregnated ti-pillared clays for selective catalytic reduction of NOx by propylene[J]. Appl Catal B:Environ, 2003,43(1):43-56. doi: 10.1016/S0926-3373(02)00274-6
LU G, LI X Y, QU Z P, ZHAO Q D, ZHAO L, CHEN G H. Copper-ion exchanged Ti-pillared clays for selective catalytic reduction of NO by propylene[J]. Chem Eng J, 2011,168(3):1128-1133. doi: 10.1016/j.cej.2011.01.095
DOU Yi-feng, SU Ya-xin, LU Zhe-xing, ZHOU Hao, DENG Wen-yi. Experimental study of NO reduction by ethane over iron[J]. J Fuel Chem Technol, 2015,43(10):1273-1280. doi: 10.3969/j.issn.0253-2409.2015.10.017
LIANG Jun-qing, SU Ya-xin, ZHOU Hao, DENG Wen-yi. Performance and mechanism of NO reduction by iron combined with propene[J]. J Fuel Chem Technol, 2016,44(8):977-984. doi: 10.3969/j.issn.0253-2409.2016.08.011
SU Ya-xin, SU A-long, REN Li-ming, DENG Wen-yi. Effect of SO2 on NO reduction by methane over iron[J]. J Fuel Chem Technol, 2014,42(3):377-384.
ZHOU Hao, SU Ya-xin, QI Yue-zhou, LU Zhe-xing, DENG Wen-yi. Effect of water vapor on NO reduction by methane over iron[J]. J Fuel Chem Technol, 2014,42(11):1378-1386. doi: 10.3969/j.issn.0253-2409.2014.11.016
QIAN Wen-yan, SU Ya-xin, YANG Xi, YUAN Min-hao, DENG Wen-yi, ZHAO Bing-tao. Experimental study on selective catalytic reduction of NO with propene over iron based catalysts supported on aluminum pillared clays[J]. J Fuel Chem Technol, 2017,45(12):1499-1507. doi: 10.3969/j.issn.0253-2409.2017.12.012
YE Qing, YAN Li-na, HUO Fei-fei, WANG Hai-ping, CHENG Shui-yuan, KANG Tian-fang. Cu-supportedon Fe-pillared sepiolite:Characterization and selective catalytic reduction(SCR)of NO by propene[J]. Acta Chim Sin, 2011,69(13):1524-1532.
YANG T T, BI H T, CHENG X. Effects of O2, CO2 and H2O on NOx adsorption and selective catalytic red uction over Fe/ZSM-5[J]. Appl Catal B:Environ, 2011,102(1/2):163-171.
MARTÍNEZ-HERNÁNDEZ A, FUENTES G A. Redistribution of cobalt species in Co-ZSM-5 during operation under wet conditions in the reduction of NOx by propane[J]. Appl Catal B:Environ, 2005,57(3):167-174. doi: 10.1016/j.apcatb.2004.10.018
KOMVOKIS V G, ILIOPOULOU E F, VASALOS I A, TRIANTAFYLLIDIS K S, MARSHALL C L. Development of optimized Cu-ZSM-5 deNOx catalytic materials both for HC-SCR applications and as FCC catalytic additives[J]. Appl Catal A:Environ, 2007,325(2):345-352. doi: 10.1016/j.apcata.2007.02.035
KIM B S, LEE S H, PARK Y T, HAM S W, CHAE H J, NAM I S. Selective catalytic reduction of NOx, by propene over copper-exchanged pillared clays[J]. Korean J Chem Eng, 2001,18(5):704-710. doi: 10.1007/BF02706390
LONG R Q, YANG R T. Selective catalytic reduction of NO with ammonia over V2O5doped TiO2 pillared clay catalysts[J]. Appl Catal B:Environ, 2000,24(1):13-21. doi: 10.1016/S0926-3373(99)00092-2
GREGG S J, SING K S W. Adsorption, Surface Area and Porosity[M]. New York:Academic Press Inc, 1982.
LONG R Q, YANG R T. Selective catalytic reduction of nitrogen oxides by ammonia over Fe3+-exchanged TiO2-pillared clay catalysts[J]. J Catal, 1999,186(2):254-268. doi: 10.1006/jcat.1999.2558
CHMIELARZ L, PIWOWARSKA Z, KUŚTROWSKI P, WEGRZYN A, GIL B, KOWALCZYK A, DUDEK B, DZIEMBAJ R, MICHALIK M. Comparison study of titania pillared interlayered clays and porous clay heterostructures modified with copper and iron as catalysts of the DeNOx process[J]. Appl Clay Sci, 2011,53(2):164-173. doi: 10.1016/j.clay.2010.12.009
SHEN Bo-xiong, MA Hong-qing, YANG Xiao-yan, YAO Yan. Study on preparation, characterization and de-NO activity of Mn-CeOx/Ti-PILC[J]. J Fuel Chem Technol, 2012,40(5):615-620. doi: 10.3969/j.issn.0253-2409.2012.05.017
OLIVEIRA L C A, RIOS R V R A, FABRIS J D, SAPAG K, GARG V K, LAGO R M. Clay-iron oxide magnetic composites for the adsorption of contaminants in water[J]. Appl Clay Sci, 2003,22(4):169-177. doi: 10.1016/S0169-1317(02)00156-4
KUMAR M S, SCHWIDDER M, GRÜNERT W, BRUCKNER A. On the nature of different iron sites and their catalytic role in Fe-ZSM-5 DeNOx, catalysts:New insights by a combined EPR and UV/VIS spectroscopic approach[J]. J Catal, 2004,227(2):384-397. doi: 10.1016/j.jcat.2004.08.003
BRANDENBERGER S, KRÖCHER O, WOKAUN A, TISSLER A, ALTHOFF R. The role of Brønsted acidity in the selective catalytic reduction of NO with ammonia over Fe-ZSM-5[J]. J Catal, 2009,268(2):297-306. doi: 10.1016/j.jcat.2009.09.028
DATKA J, TUREK A M, JEHNG J M, WACHS I E. Acidic properties of supported niobium oxide catalysts:An infrared spectroscopy investigation[J]. J Catal, 1992,135(135):186-199.
SULTANA A, HANEDA M, FUJITANI T, HAMADA H. Influence of Al2O3 support on the activity of Ag/Al2O3 catalysts for SCR of NO with decane[J]. Catal Lett, 2007,114(1):96-102.
CHMIELARZ L, PIWOWARSKA Z, KUŚTROWSKIP , WEGRZYN A, GIL B, KOWALCZYK A, DUDEK B, DZIEMBAJ R, MICHALIK M. Comparison study of titania pillared interlayered clays and porous clay heterostructures modified with copper and iron as catalysts of the DeNOx process[J]. Appl Clay Sci, 2011,53(2):164-173. doi: 10.1016/j.clay.2010.12.009
TOLEDO-ANTONIO J A, CORTÉS-JÁCOME M A, NAVARRETE J, ANGELES-CHAVEZ C, LOPEZ-SALINAS E, RENDON-RIVERA A. Morphology induced CO, pyridine and lutidine adsorption sites on TiO2:Nanoparticles, nanotubes and nanofibers[J]. Catal Today, 2010,155(3/4):247-254.
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ−壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015
Jingkun Yu , Xue Yong , Ang Cao , Siyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
Zhi Chai , Huashan Huang , Xukai Shi , Yujing Lan , Zhentao Yuan , Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
Lijun Yue , Siya Liu , Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
Shuhong Xiang , Lv Yang , Yingsheng Xu , Guoxin Cao , Hongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097
Zijian Zhao , Yanxin Shi , Shicheng Li , Wenhong Ruan , Fang Zhu , Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094
Xichen YAO , Shuxian WANG , Yun WANG , Cheng WANG , Chuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384
(a): NO conversion; (b): C3H6 conversion; (c): N2 selectivity
GHSV=12000 h-1, total flow=100 mL/min, N2 banlanced
(a): N2 adsorption/desorption isotherms; (b): BJH pore size distribution
a: Ti-PILC; b: 5Fe/Ti-PILC; c: 13Fe/Ti-PILC; d: 19Fe/Ti-PILC; e: 22Fe/Ti-PILC
(a): 170 ℃ desorption; (b): 300 ℃ desorption