Citation: Wang Shiyu, Li Minghua, Xue Shanshan, Huang Yanru, He Wei. Progress in Application of Nitroxide Radicals[J]. Chemistry, ;2017, 80(11): 1002-1008. shu

Progress in Application of Nitroxide Radicals

  • Corresponding author: He Wei, weihechem@fmmu.edu.cn
  • Received Date: 24 March 2017
    Accepted Date: 28 August 2017

Figures(5)

  • Nitroxide radical compounds are organic compounds containing carbon, nitrogen, oxygen, hydrogen, and spin-on-one electrons, and are used in many fields because of their special properties. In this review, the characteristics of nitroxides and their application in biology, magnetism, organic catalysis and polymerization were summarized. The development trend of nitroxide radical compounds were discussed.
  • 加载中
    1. [1]

      (a) E Fremy. Ann. Chim. Phys., 1845, 15: 408; (b) H Zimmer, D C Lankin, S W Horgan. Chem. Rev., 1971, 71: 229~246.

    2. [2]

      (a) O Piloty, B G Schwerin. Ber. Dtsch. Chem. Ges., 1901, 34(2): 1863~1870; (b) H Wieland, M Offenbächer. Ber. Dtsch. Chem. Ges., 1914, 47(2): 2111~2115; (c) O L Lebedev, S N Kazarnovsky. Tr. Khim. Khim. Tekhnol., 1959, 3: 649~653.

    3. [3]

      H M Swartz, J R Booton, D C Borg. Biological applications of electron spin resonance. Wiley-Interacience New York, 1972.

    4. [4]

      O H Griffith, P C Jost, L J Berliner. Spin labeling: theory and applications. Academic Press., New York, 1976.

    5. [5]

       

    6. [6]

      B K Sinha, R L Cysyk, D B Millar et al. J. Med. Chem., 1976, 19(8): 994~998. 

    7. [7]

      J Ilas, S Pecar, J Hockemeyer et al. J. Med. Chem., 2005, 48(6): 2108~2114. 

    8. [8]

      M Zhao, J L Liu, C Wang et al. J. Med. Chem., 2005, 48(13): 4285~4292. 

    9. [9]

      G Vendemiale, I Grattagliano, E Altomare. Int. J. Clin. Lab. Res., 1999, 29: 49~55. 

    10. [10]

      M S Cooke, M D Evans, M Dizdaroglu et al. FASEB J., 2003, 17: 1195~1214.

    11. [11]

      C W Olanow. Ann. Neurol., 1992, 32: S2~S9. 

    12. [12]

      R Terranova, R Sorace, A Romeo et al. Minerva. Med., 2001, 92: 405~410. 

    13. [13]

      D D Bankson, M Kestin, N Rifai et al. Clin. Lab. Med., 1993, 13: 463~480. 

    14. [14]

      S Jaswal, H C Mehta, A K Sood et al. Clin. Chim. Acta, 2003, 338: 123~129. 

    15. [15]

      J C W Mak, M M Chan-Yeung. Curr. Opin. Pulm. Med., 2006, 12: 7~11. 

    16. [16]

      S S Sheu, D Nauduri, M W Anders. Biochim. Biophys. Acta, 2006, 1762: 256~265. 

    17. [17]

      R E Anderson, F L Kretzer, L M Rapp. Adv. Exp. Med. Biol., 1994, 366: 73~86. 

    18. [18]

      J H Osiecki, E F Ullman. J. Am. Chem. Soc., 1968, 90: 1078~1079. 

    19. [19]

      R F Haseloff, S Zollner, I A Kirilyuk et al. Free Radical Res., 1997, 26: 7~17. 

    20. [20]

      I E Blasig, K Mertsch, R F Haseloff. Neuropharmacology, 2002, 43: 1006~1014. 

    21. [21]

      A Samuni, C M Krishna, P Riesz et al. J. Biol. Chem., 1988, 263(34): 17921~17924. 

    22. [22]

      N Kocherginsky, H Swartz. Nitroxide spin labels: reactions in biology and chemistry. New York: CRC Press, 1995.

    23. [23]

      R A Floyd, R D Kopke, C H Choi. Free Radical Bio. Med., 2008, 45(10): 1361~1374. 

    24. [24]

    25. [25]

      J B Mitchell, W De Graff, D Kaufman et al. Arch. Biochem. Biophys., 1991, 289(1): 62~70. 

    26. [26]

       

    27. [27]

       

    28. [28]

       

    29. [29]

       

    30. [30]

       

    31. [31]

      M C Krishna, A Russo, J B Mitchell et al. J. Biol. Chem., 1996, 271(420): 26026~26031.

    32. [32]

      M C Krishna, W Degraf, O H Hankovszky et al. J. Med. Chem., 1998, 41(18): 3477~3492. 

    33. [33]

      G L Wen, Y Z Xiao, J W Yong et al. J. Pharm. Pharmacol., 2006, 58(7): 941~949. 

    34. [34]

      J B Mitchell, S Xavier, A M Deluca et al. Free Radical Biol. Med., 2003, 34(1): 93~102. 

    35. [35]

      R Schubert, L Erker, C Barlow et al. Hum. Mol. Genet., 2004, 13(16): 1793~1802. 

    36. [36]

      O Augusto, D F Trindade, E Linares et al. An. Acad. Bras. Cienc., 2008, 80(1): 179~189. 

    37. [37]

      C S Wilcox. Pharmacol. Ther., 2010, 126(3): 119~145. 

    38. [38]

      D Gelvan, P Saltman, S R Powell. PNAS, 1991, 88(11): 4680~4684. 

    39. [39]

      M C McDonald, K Zacharowski, J Bowes et al. Free Radical Biol. Med., 1999, 27(5-6): 493~503. 

    40. [40]

      S Cuzzocrea, M C McDonald, E Mazzon et al. Brain Res., 2000, 875(1-2): 96~106. 

    41. [41]

      M G Abou, J A Johnson, L Jin et al. J. Pharmacol. Exp. Ther., 2004, 308(1): 289~299. 

    42. [42]

      W Bi, J H Cai, P Xue et al. Bioorg. Med. Chem. Lett., 2008, 18: 1788~1794. 

    43. [43]

      A Blaise, H Lemaire, J Pilon et al. C. R. Acda. Sci. Paris, Ser. B, 1972, 274: 157~162.

    44. [44]

      A Caneschi, D Gatteschi, R Sessoli. Acc. Chem. Res., 1989, 22(11): 392~398. 

    45. [45]

      (a) J S Miller, A J Epstein. Angew. Chem. Int. Ed., 1994, 33: 385~415; (b) D Gatteschi. Curr. Opin. Solid State Mater. Sci., 1996, 1: 192~198. 

    46. [46]

      M Tamura, Y Nakazawa, D Shiomi et al. Chem. Phys. Lett., 1991, 186(1-2): 401~404. 

    47. [47]

      Y Nakazawa, M Tamura, M Kinoshita et al. Phys. Rev. B., 1992, 46(14): 8906~8914. 

    48. [48]

      K Awaga, T Inabe, Y Maruyama. Chem. Phys. Lett., 1992, 190(3-4): 349~352. 

    49. [49]

      T Sugano, M Kurmoo, F L Pratt et al. Mol. Cryst. Liq. Cryst., 1995, 271: 107~114. 

    50. [50]

      T Sugawara, M M Matsushita, A Izuoka et al. J. Am. Chem. Soc., 1997, 119(19): 4369~4379. 

    51. [51]

      J Cirujeda, M Mas, E Molins et al. Chem. Commun., 1995, (7): 709~710. 

    52. [52]

      A Caneschi, F Ferraro, D Gatteschi et al. Adv. Mater., 1995, 7(5): 476~478. 

    53. [53]

      S Nakatsuji, M Saiga, N Haga et al. New J. Chem., 1998, 22(3): 275~280.

    54. [54]

      S Nakatsuji, H Morimoto, H Anzai et al. Chem. Phys. Lett., 1998, 296(1-2): 159~166. 

    55. [55]

       

    56. [56]

       

    57. [57]

      (a) J Foricher, K Furbriner. EP: 0198351, 1986; (b) J Foricher, C Furbringer, K Pfoertner. USP: 5030739, 1991.

    58. [58]

      Y Ishii, K Nakayama, M Takeno et al. J. Org. Chem., 1995, 60(13): 3934~3935. 

    59. [59]

      V A Golubev, E G Rozantsev, M B Neiman et al. Sci. USSR Chem. Ser., 1965, 4: 1898~1904. 

    60. [60]

      (a) M F Semmelhack, C R Schmid, D A Cortes et al. J. Am. Chem. Soc., 1984, 106(11): 3374~3376; (b) P L Anelli, C Biffi, F Montanari et al. J. Org. Chem., 1987, 52(12): 2559~2562. 

    61. [61]

      A Dijksman, A M Gonzalez, A M Payeras et al. J. Am. Chem. Soc., 2001, 123(8): 6826~6833. 

    62. [62]

      R Liu, X Liang, C Dong et al. J. Am. Chem. Soc., 2004, 126(13): 4112~4113. 

    63. [63]

      X L Wang, R H Liu, Y Jin et al. Chem. Eur. J., 2008, 14(9): 2679~2685. 

    64. [64]

      (a) M S Maji, T Pfeifer, A Studer. Angew. Chem. Int. Ed., 2008, 47(49): 9547~9550; (b) M S Maji, A Studer. Synthesis, 2009, (14): 2467~2470; (c) M S Maji, S Murarka, A Studer. Org. Lett., 2010, 12(17): 3878~3881. 

    65. [65]

      J O Denis, J S David. DEP: 2060645, 1972; D J O'sullivan, D J Stamper. USP: 3682875, 1972.

    66. [66]

       

    67. [67]

       

    68. [68]

      J R Harbour, J R Bolton. Biochem. Bioph. Res. Co., 1975, 64(3): 803~807. 

    69. [69]

      G I Likhtenshtein, J Yamauchi, S Nakatsuji et al. Nitroxides: applications in chemistry biomedicine, and materials science. Wiley-VCH, Weinheim, 2008, 371.

    70. [70]

      C Michaut, L Ouahab, P Bergerat et al. J. Am. Chem. Soc., 1996, 118(15): 3610~3616. 

    71. [71]

      E Damiani, R Castagna, L Greci. Free Radical Biol. Med., 2002, 33(1): 128~136. 

    72. [72]

      J L Viñas, A Sola, M Gensecà et al. Free Radical Biol. Med., 2006, 40(6): 992~1003. 

    73. [73]

      T H Kwon, D L Chao, K Malloy et al. J. Neurotraum., 2003, 20(4): 337~345. 

    74. [74]

  • 加载中
    1. [1]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    4. [4]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    5. [5]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    6. [6]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    7. [7]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    8. [8]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    9. [9]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    10. [10]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    11. [11]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    12. [12]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    13. [13]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    14. [14]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    15. [15]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    16. [16]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    19. [19]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    20. [20]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

Metrics
  • PDF Downloads(216)
  • Abstract views(9442)
  • HTML views(3704)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return