Performance and mechanism of NO reduction by iron combined with propene
- Corresponding author: SU Ya-xin, suyx@dhu.edu.cn
Citation:
LIANG Jun-qing, SU Ya-xin, ZHOU Hao, DENG Wen-yi. Performance and mechanism of NO reduction by iron combined with propene[J]. Journal of Fuel Chemistry and Technology,
;2016, 44(8): 977-984.
LIU J, LI X, ZHAO Q, ZHANG D, NDOKOYE P. The selective catalytic reduction of NO with propene over Cu-supported Ti-Ce mixed oxide catalysts:Promotional effect of ceria[J]. J Mol Catal A:Chem, 2013,378:115-123. doi: 10.1016/j.molcata.2013.06.005
LIU X, JIANG Z, CHEN M, SHI J, SHANGGUAN W, TERAOKA Y. Characterization and performance of Pt/SBA-15 for low-temperature SCR of NO by C3H6[J]. J Environ Sci, 2013,25(5):1023-1033. doi: 10.1016/S1001-0742(12)60107-7
HOUEL V, JAMES D, MILLINGTON P, POLLINGTON S, POULSTON S, RAJARAM R, TORBATI R. A comparison of the activity and deactivation of Ag/Al2O3 and Cu/ZSM-5 for HC-SCR under simulated diesel exhaust emission conditions[J]. J Catal, 2005,230(1):150-157. doi: 10.1016/j.jcat.2004.12.003
KOMVOKIS V G, ILIOPOULOU E F, VASALOS I A, TRIANTAFYLLIDIS K S, MARSHALL C L. Development of optimized Cu-ZSM-5 deNOx catalytic materials both for HC-SCR applications and as FCC catalytic additives[J]. Appl Catal A:Gen, 2007,325(2):345-352. doi: 10.1016/j.apcata.2007.02.035
BURCH R, WATLING T C. The effect of promoters on Pt/Al2O3 catalysts for the reduction of NO by C3H6 under lean-burn conditions[J]. Appl Catal B:Environ, 1997,11(2):207-216. doi: 10.1016/S0926-3373(96)00043-4
CHANG F Y, WEY M Y, CHEN J C. Effects of sodium modification, different reductants and SO2 on NO reduction by Rh/Al2O3 catalysts at excess O2 conditions[J]. J Hazard Mater, 2008,156(1/3):348-355.
ZHANG R, VILLANUEVA A, ALAMDARI H, KALIAGUINE S. Cu- and Pd- substituted nanoscale Fe-based perovskites for selective catalytic reduction of NO by propene[J]. J Catal, 2006,237(2):368-380. doi: 10.1016/j.jcat.2005.11.019
WANG Xin-kui, ZHANG Wan-sheng, WANG Ai-qin, WANG Xiao-dong, YANG Xue-feng, ZHANG Tao. Selective catalytic reduction of NO with propene over Au/Fe2O3/Al2O3 catalysts[J]. Chin J Catal, 2008,29(6):503-505. doi: 10.1016/S1872-2067(08)60046-7
YE Qing, YAN Li-na, HUO Fei-fei, WANG Hai-ping, CHENG Shui-yuan, KANG Tian-fang. Cu-supported on Fe-pillared sepiolite:Characterization and selective catalytic reduction (SCR) of NO by propene[J]. Chin J Inorg Chem, 2012,28(1):103-112.
GUO Xi-kun, LIU Qing-hong, LIN Qi-chun. Preparation of La-modified Cu-based Al-Ce pillared montmorillonite and its catalytic properties for selective reduction of NO by propylene[J]. Chin J Catal, 2004,25(12):989-994.
SU Ya-xin, REN Li-ming, SU A-long, DENG Wen-yi. Experimental study on NO reduction by methane over iron and its oxides[J]. J Fuel Chem Technol, 2013,41(11):1393-1400.
SU Ya-xin, LU Zhe-xing, ZHOU Hao, DOU Yi-feng, DENG Wen-yi. Experimental study on NO reduction by propane over iron[J]. J Fuel Chem Technol, 2014,42(12):1470-1477.
DOU Yi-feng, SU Ya-xin, LU Zhe-xing, ZHOU Hao, DENG Wen-yi. Experimental study of NO reduction by ethane over iron[J]. J Fuel Chem Technol, 2015,43(10):1273-1280.
SU Ya-xin, SU A-long, REN Li-ming, DENG Wen-yi. Effect of SO2 on NO reduction by methane over iron[J]. J Fuel Chem Technol, 2014,42(3):377-384.
ZHOU Hao, SU Ya-xin, QI Yue-zhou, LU Zhe-xing, DENG Wen-yi. Effect of water vapor on NO reduction by methane over iron[J]. J Fuel Chem Technol, 2014,42(11):1378-1386.
GRADON B, LASEK J. Investigation of reduction of NO to N2 by reaction with Fe[J]. Fuel, 2010,89(11):3505-3509. doi: 10.1016/j.fuel.2010.06.020
SU Ya-xin, SU A-long, CHENG Hao. Experimental study on effect of CO on NO reduction by iron mesh roll[J]. J Basic Sci Eng, 2013,21(4):638-646.
DAGAUT P, LUCHE J, CATHONNET M. Experimental and kinetic modeling of the reduction of NO by propene at 1 atm[J]. Combust Flame, 2000,121(4):651-661. doi: 10.1016/S0010-2180(00)00095-X
KOUOTOU P M, TIAN Z, VIEKER H, BEYER A, GOLZHAUSER A, KOHSE-HOINGHAUS K. Selective synthesis of a-Fe2O3 thin films and effect of the deposition temperature and lattice oxygen on the catalytic combustion of propene[J]. J Mater Chem A, 2013,1:10495-10504. doi: 10.1039/c3ta11354j
BALDI M, ESCRIBANO V S, AMORES J M G, MILELLA F, BUSCA G. Characterization of manganese and iron oxides as combustion catalysts for propane and propene[J]. Appl Catal B:Environ, 1998,17(3):L175-L182. doi: 10.1016/S0926-3373(98)00013-7
VAN STEEN E, SCHNOBEL M, WALSH R, Riedel T. Time on stream behaviour in the partial oxidation of propene over iron antimony oxide[J]. Appl Cata A:Gen, 1997,165:349-356. doi: 10.1016/S0926-860X(97)00217-2
JOHNSON D K, ENGELHARDT D A, HARVILLA J.Reburning technologies for the control of nitrogen oxides emissions from coal-fired boilers[R].Washington, DC:United States Dept.of Energy, 1999.
SU Ya-xin, GATHITU B B, CHEN W Y. Experimental examination of HCN compound control by Fe2O3 during reburning processes[J]. Acta Sci Circumstantiae, 2011,31(6):1181-1186.
SU Y, GATHITU B B, CHEN W Y. Efficient and cost effective reburning using common wastes as fuel and additives[J]. Fuel, 2010,89(9):2569-2582. doi: 10.1016/j.fuel.2009.12.009
Xinxin YU , Yongxing LIU , Xiaohong YI , Miao CHANG , Fei WANG , Peng WANG , Chongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
Zijian Zhao , Yanxin Shi , Shicheng Li , Wenhong Ruan , Fang Zhu , Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
Xiuyun Wang , Jiashuo Cheng , Yiming Wang , Haoyu Wu , Yan Su , Yuzhuo Gao , Xiaoyu Liu , Mingyu Zhao , Chunyan Wang , Miao Cui , Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
Tong Zhou , Liyi Xie , Chuyu Liu , Xiyan Zheng , Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
Qingjun PAN , Zhongliang GONG , Yuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
Yutao Lu , Jing Wu . Rebirth from the Flames: Unveiling the “Chemical Secrets” of Fire Smoke. University Chemistry, 2024, 39(9): 208-213. doi: 10.12461/PKU.DXHX202401001
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
Jinfeng Chu , Yicheng Wang , Ji Qi , Yulin Liu , Yan Li , Lan Jin , Lei He , Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105
Li'na ZHONG , Jingling CHEN , Qinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280
Peng XU , Shasha WANG , Nannan CHEN , Ao WANG , Dongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
(flow rate 2 L/min, φNO=0.05%,φC3H6=0.1%-0.3% in N2 base) ■: φC3H6=0.1%; ●: φC3H6=0.2%; ▼: φC3H6=0.3%; ∇: φC3H6=0.2%, without iron;□: φC3H8=0.1%[12]; ○: φC3H8=0.2%[12]
(flow rate 2 L/min, φNO=0.05%,φC3H6=0.1%-0.3%, in N2 base) ■: φC3H6=0.1%; ●: φC3H6=0.2%; ▲: φC3H6=0.3%; □: φC3H8=0.1%; ○: φC3H8=0.2%
(flow rate 2 L/min, φNO=0.05%, φC3H6=0.2%, in N2 base)
(flow rate 2 L/min, φNO=0.05%, φC3H6=0.1%, in N2 base)
(flow rate 2 L/min, φNO=0.05%, φC3H6=0.2%, in N2 base)
(flow rate 2 L/min, φO2=2.0%,φCO2=17.0%, φNO=0.05%, in N2 base)
■: SR1=SR2=0.7; □: SR1=0.7, SR2=1.2;●: SR1=SR2=0.8; ○: SR1=0.8, SR2=1.2;
▲: SR1=SR2=0.9; △: SR1=0.9, SR2=1.2;
▼: SR1=SR2=1.0; ∇: SR1=1.0, SR2=1.2;
◀: SR1=SR2=1.1; ◁: SR1=1.1, SR2=1.2;▶: SR1=SR2=1.2
(flow rate 2 L/min, φO2=2.0%, φCO2=17.0%, φNO=0.05%, in N2 base)
■: with iron, SR1=0.7, SR2=1.2;
□: without iron, SR1=0.7, SR2=1.2;
●: with iron, SR1=0.9, SR2=1.2;
○: without iron, SR1=0.9, SR2=1.2;
▲: with iron, SR1=1.0, SR2=1.2;
△: without iron, SR1=1.0, SR2=1.2;
▼: with iron, SR1=1.2, SR2=1.2;
∇: without iron, SR1=1.2, SR2=1.2
(flow rate 2 L/min, φO2=2.0%, φCO2=17.0%, φNO=0.05%, in N2 base)
■: C3H6, SR1=0.7, SR2=1.2;
□: C3H8, SR1=0.7, SR2=1.2;
●: C3H6, SR1=0.9, SR2=1.2;
○: C3H8, SR1=0.9, SR2=1.2;
▲: C3H6, SR1=1.0, SR2=1.2;
△: C3H8, SR1=1.0, SR2=1.2;
▼: C3H6, SR1=1.2, SR2=1.2;
∇: C3H8, SR1=1.2, SR2=1.2
(flow rate 2 L/min, φO2=2.0%, φCO2=17.0%, φNO=0.05%, φSO2=0-0.04%, in N2 base)
■: φSO2=0, SR2=1.2;
□: φSO2=0, SR2=0.9;
●: φSO2=0.01%, SR2=1.2;
○: φSO2=0.01%, SR2=0.9;
▲: φSO2=0.02%, SR2=1.2;
△: φSO2=0.02%, SR2=0.9;
▼: φSO2=0.04%, SR2=1.2;
∇: φSO2=0.04%, SR2=0.9