Citation: Cuiping Huang, Shanshan Li, Dujuan Lu, Tianle Qi, Guanghui Shen, Zhiqing Zhang. Progress in Nanomaterial-Based Electrochemical Sensors for Antibiotic Detection[J]. Chemistry, ;2021, 84(2): 139-148. shu

Progress in Nanomaterial-Based Electrochemical Sensors for Antibiotic Detection

  • Corresponding author: Shanshan Li, 95467292@qq.com
  • Received Date: 5 August 2020
    Accepted Date: 2 September 2020

Figures(3)

  • In recent years, antibiotics have been widely used as basic therapeutic drugs in medicine, animal husbandry, aquaculture industries and so on. However, we are now facing serious contamination of antibiotics (e.g., ecological environment and food) and the associated health concerns because of their uncontrolled disposal. In an effort to resolve this problem, nanostructured electrochemical platforms comprising of diverse materials have been proposed to rapidly detect antibiotic residues, and considerable progress has been made. Here, various nano-electrochemical sensors for detection of antibiotics residues are reviewed. The present review begins with a brief introduction to antibiotics followed by an analysis of the electrochemical properties of antibiotics. Then, the review summaries the application of existing nano-electrochemical platforms comprising of diverse nanostructured materials to highlight the significance of the nanomaterials for detection of antibiotics in diverse matrices. Finally, we provide an outlook on the future concepts of this research field to help upgrade the detecting techniques for antibiotics.
  • 加载中
    1. [1]

      Sommet A. Therapies, 2019, 74(2): 249~253.

    2. [2]

    3. [3]

      Devkota L, Nguyen L T, Vu T T, et al. Electrochim. Acta, 2018, 270: 535~542.

    4. [4]

      Mohr K I. Curr. Top. Microbiol. Immunol., 2016, 398: 237~272.

    5. [5]

      Peng T, Dai X, Zhang Y, et al. Sens. Actuat. B, 2020, 304: 127314.

    6. [6]

      Sanz C G, Serrano S H P, Brett C M A. J. Electroanal. Chem., 2019, 844: 124~131.

    7. [7]

      Mcglinchey T A, RafterR P A, Regan F, et al. Anal. Chim. Acta, 2008, 624(1): 1~15.

    8. [8]

      Roushani M, Ghanbari K, Jafar H S. Microchem. J., 2018, 141: 96~103.

    9. [9]

      Wangfuengkanagul N, Siangproh W, Chailapakul O. Talanta, 2004, 64(5): 1183~1188.

    10. [10]

      Karimi-maleh H, Amini F, Akbari A, et al. J. Colloid Interf. Sci., 2017, 495: 61~67.

    11. [11]

      Velusamy V, Palanisamy S, Kokulnathan T, et al. J. Colloid Interf. Sci., 2018, 530: 37~45.

    12. [12]

      Durand G A, Raoult D, Dubourg G. Int. J. Antimicrob. Agents, 2019, 53(4): 371~382.

    13. [13]

      Abubakar U, Muhammad H T, Sulaiman S A S, et al. Curr. Pharm. Teach. Learn, 2020, 12(3): 265~273.

    14. [14]

    15. [15]

      Ayankojo A G, Reut J, Ciocan V, et al. Talanta, 2020, 209: 120502.

    16. [16]

      Canales C, Peralta E, Antilen M. J. Electroanal. Chem., 2019, 832: 329~335.

    17. [17]

      Ghanbari K, Roushani M. Bioelectrochemistry, 2018, 120: 43~48.

    18. [18]

      Sun S, Korheina D K A, Fu H, et al. Total Environ., 2020, 720: 137478.

    19. [19]

      Chiesa L, Panseri S, Pasquale E, et al. Food Chem., 2018, 258: 222~230.

    20. [20]

      Nguyen T A H, Phan T N M, Le T B, et al. J. Chromatogr. A, 2019, 1605: 360356.

    21. [21]

      Wu Q, Gao X, Shabbir M A B, et al. Microchem. J., 2020, 152: 104417.

    22. [22]

    23. [23]

    24. [24]

      Joshi A, Kim K H. Biosens. Bioelectron., 2020, 153: 112046.

    25. [25]

      Kokulnathan T, Chen S M. J. Hazard. Mater., 2020, 384: 121304.

    26. [26]

      Jafari S, Dehghani M, Nasirizadeh N, et al. Measurement, 2019, 145: 22~29.

    27. [27]

      Sharma N, Selvam S P, Yun K. Appl. Surf. Sci., 2020, 512: 145742.

    28. [28]

      Guo H, Su Y, Shen Y, et al. Colloid Interf. Sci., 2019, 536: 646~654.

    29. [29]

      Govindasamy M, Wang S F, Kumaravel S, et al. Ultrason. Sonochem., 2019, 52: 382~390.

    30. [30]

      Wong A, Santos A M, Cincotto F H, et al. Talanta, 2020, 206: 120252.

    31. [31]

      Ghanbari M H, Khoshroo A, Sobati H, et al. Microchem. J., 2019, 147: 198~206.

    32. [32]

      Prado T M D, Foguel M V, Goncalves L M, et al. Sens. Actuat. B, 2015, 210: 254~258.

    33. [33]

      Ghodsi J, Rafati A A, Shoji Y. Sens. Actuat. B, 2016, 224: 692~699.

    34. [34]

      Zhu X, Liu P, Ge Y, et al. Electroanal. Chem., 2020, 862: 113940.

    35. [35]

      Hu L, Zhou T, Feng J, et al. Electroanal. Chem., 2018, 813: 1~8.

    36. [36]

      Simioni N B, Silva T A, Oliveira G, et al. Sens. Actuat. B, 2017, 250: 315~323.

    37. [37]

      Wang Y, Yao L, Liu X, et al. Biosens. Bioelectron., 2019, 142: 111483.

    38. [38]

      Moro G, Bottari F, Sleegers N, et al. Sens. Actuat. B, 2019, 297: 126786.

    39. [39]

      Li F, Wang X, Sun X, et al. Sens. Actuat. B, 2018, 265: 217~226.

    40. [40]

      Li Z, Liu C, Sarpong V, et al. Biosens. Bioelectron., 2019, 126: 632~639.

    41. [41]

      Yi W, Li Z, Dong C, et al. Microchem. J., 2019, 148: 774~783.

    42. [42]

      Chen T W, Rajaji U, Chen S M, et al. Ultrason. Sonochem., 2019, 58: 104596.

    43. [43]

      Chen T W, Rajaji U, Chen S M, et al. Ultrason. Sonochem., 2019, 56: 430~436.

    44. [44]

      Sun Y, Xu L, Waterhouse G I N, et al. Sens. Actuat. B, 2019, 281: 107~114.

    45. [45]

      Dehghani M, Nasirizadeh N, Yazdanshenas M E. Mater. Sci. Eng. C, 2019, 96: 654~660.

    46. [46]

      Yin J, Guo W, Qin X, et al. Sens. Actuat. B, 2017, 241: 151~159.

    47. [47]

      Chen M, Gan N, Zhou Y, et al. Talanta, 2016, 161: 867~874.

    48. [48]

      Chen M, Gan N, Li T, et al. Anal. Chim. Acta, 2017, 968: 30~39.

    49. [49]

      Chen M, Gan N, Zhou Y, et al. Sens. Actuat. B, 2017, 242: 1201~1209.

    50. [50]

      Kang X, Mai Z, Zou X, et al. Anal. Biochem., 2007, 369(1): 71~79.

    51. [51]

      Liu Y, She P, Gong J, et al. Sens. Actuat. B, 2015, 221: 1542~1553.

    52. [52]

      Jafari S, Dehghani M, Nasirizadeh N, et al. Electroanal. Chem., 2018, 829: 27~34.

    53. [53]

      SgobbiI L F, Razzino C A, Machado S A S. Electrochim. Acta, 2016, 191: 1010~1017.

    54. [54]

      Abergel D S L, Apalkov V, Berashevich E J, et al. Adv. Phys., 2010, 59(4): 261~482.

    55. [55]

      MkhoyanK A, Contryman A W, Silcox J, et al. Nano Lett., 2009, 9(3): 1058~1063.

    56. [56]

      Guo W, Pi F, Zhang H, et al. Biosens. Bioelectron., 2017, 98: 299~304.

    57. [57]

      Velusamy V, Palanisamy S, Chen S W, et al. Talanta, 2019, 192: 471~477.

    58. [58]

      Lu J, Hu Y, Wang P, et al. Sens. Actuat. B, 2020, 311: 127909.

    59. [59]

      Kumar S, Karfa P, Majhi K C, et al. Mater. Sci. Eng. C, 2020, 111: 110777.

    60. [60]

      Wang M, Hu M, Liu J, et al. Biosens. Bioelectron., 2019, 132: 8~16.

    61. [61]

      Liu Z, Jin M, Cao J, et al. Sens. Actuat. B, 2018, 257: 1065~1075.

    62. [62]

      Yalikun N, Mamat X, Li Y, et al. Colloids Surf. B, 2018, 172: 98~104.

    63. [63]

      Rajaji U, Muthumariappan A, Chen S M, et al. Ultrason. Sonochem., 2019, 58: 104648.

    64. [64]

      Sun Y, He J, Waterhouse G I N, et al. Sens. Actuat. B, 2019, 300: 126993.

    65. [65]

      Xiao J, Hu X, Wang K, et al. Biosens. Bioelectron., 2020, 150: 111883.

    66. [66]

      Zhang Z, Yang M, Wu X, et al. Chemosphere, 2019, 225: 282~287.

    67. [67]

      Besharati M, Hamedi J, Hossinkhani S, et al. Bioelectrochemistry, 2019, 128: 66~73.

  • 加载中
    1. [1]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    2. [2]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    3. [3]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    6. [6]

      Jijun Sun Qianlang Wang Qian Chen Quanqin Zhao Shumei Zhai . The Antibiotic Legion’s Manifesto to Human Allies. University Chemistry, 2025, 40(4): 307-321. doi: 10.12461/PKU.DXHX202405206

    7. [7]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    8. [8]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    9. [9]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    10. [10]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    11. [11]

      Peiling Li Qing Feng Hongling Yuan Qin Wang . Live Interview Recording about the Penicillin Family. University Chemistry, 2024, 39(9): 122-127. doi: 10.3866/PKU.DXHX202311022

    12. [12]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    13. [13]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    14. [14]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    15. [15]

      Shasha SUNWeichun HUANGMengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430

    16. [16]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    17. [17]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    18. [18]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    19. [19]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    20. [20]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(5)
  • Abstract views(253)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return