Citation: XIAO Jian, ZHAO Yun-peng, DING Man, WEI Xian-yong, ZONG Zhi-min. Composition and structural characteristics of nitrogen-containing species in the soluble organic species of Xianfeng lignite[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(4): 385-393. shu

Composition and structural characteristics of nitrogen-containing species in the soluble organic species of Xianfeng lignite

  • Corresponding author: ZHAO Yun-peng, yunpengzhao2009@163.com
  • Received Date: 24 November 2016
    Revised Date: 12 January 2017

    Fund Project: Open Foundation from State Key Laboratory Breeding Base of Coal Science and Technology Co-founded by Shanxi Province and Ministry Education MX201502the Fundamental Research Funds for the Central Universities 中国矿业大学,2015QNA25

Figures(6)

  • Xianfeng lignite (XL) was firstly thermal dissolved in the isometric toluene/methanol mixed solvent at 300℃ in a stainless-steel autoclave to afford a soluble portion (SPXL) and a residue (RXL), then the nitrogen forms in XL and RXL were characterized with X-ray photoelectron spectroscopy (XPS) analysis, and the nitrogen-containing species (NCSs) in SPXL were identified using gas chromatography/mass spectrometry (GC/MS) and electrospray ionization Fourier transform ion cyclotron mass spectrometry (ESI FT-ICR MS) analyses. The results show that the amount of nitrogen forms in XL is in the order of quaternary-N>pyridinic-N>pyrrolic-N, while quaternary-N in XL is easily dissolved out during thermal dissolution. In total 20 NCSs were detected in SPXL by GC/MS, and most of them are amines. Over three hundreds of NCSs were identified in SPXL by ESI FT-ICR MS, and most of them are the NCSs containing one or three nitrogen atoms. The NCSs containing one nitrogen atom are mainly dominated by N1O1, N1O2 and N1OxS1-2 class species, while most of NCSs containing three nitrogen atoms are N3OxS1-2 class species (x=1-12). The double bond equivalent (DBE) values and carbon number of the NCSs containing one nitrogen atom increase with increasing number of oxygen atoms.
  • 加载中
    1. [1]

      KAMBARA S, TAKARADA T, TOYOSHIMA M, KATO K. Relation between functional forms of coal nitrogen and NOx emissions from pulverized coal combustion[J]. Fuel, 1995,74(9):1247-1253. doi: 10.1016/0016-2361(95)00090-R

    2. [2]

      MULLINS O C, MITRA-KIRTLEY S, VAN ELP J, CRAMER S P. Molecular structure of nitrogen in coal from XANES spectroscopy[J]. Appl Spectrosc, 1993,47(8):1268-1275. doi: 10.1366/0003702934067991

    3. [3]

      YU L Y, HILDEMANN L M, NIKSA S. Characteristics of nitrogen-containing aromatic compounds in coals tars during secondary pyrolysis[J]. Fuel, 1999,78(3):377-385. doi: 10.1016/S0016-2361(98)00130-6

    4. [4]

      KELEMEN S R, GORBATY M L, KWIATEK P J. Quantification of nitrogen forms in Argonne premium coals[J]. Energy Fuels, 1994,8(4):896-906. doi: 10.1021/ef00046a013

    5. [5]

      MITRA-KIRTLEY S, MULLINS O C, VAN ELP J, CRAMER S P. Nitrogen chemical structure in petroleum asphaltene and coal by X-ray absorption spectroscopy[J]. Fuel, 1993,72(1):133-135. doi: 10.1016/0016-2361(93)90388-I

    6. [6]

      ASHIDA R, MORIMOTO M, MAKINO Y, UMEMOTO S, NAKAGAWA H, MIURA K, SAITO K, KATO K. Fractional of brown coal by sequential high temperature solvent extraction[J]. Fuel, 2009,88(8):1485-1490. doi: 10.1016/j.fuel.2008.12.003

    7. [7]

      LU H Y, WEI X Y, YU R, PENG Y L, QI X Z, QIE L M, WEI Q, LV J, ZONG Z M, ZHAO W, ZHAO Y P, NI Z H, WU L. Sequential thermal dissolution of Huolinguole lignite in methanol and ethanol[J]. Energy Fuels, 2011,25(6):2741-2745. doi: 10.1021/ef101734f

    8. [8]

      SHUI H F, ZHOU Y, LI H P, WANG Z C, LEI Z P, REN S B, PAN C X, WANG W W. Thermal dissolution of Shenfu coal in different solvents[J]. Fuel, 2013,108(6):385-390.  

    9. [9]

      DING M, ZHAO Y P, DOU Y Q, WEI X Y, FAN X, CAO J P, WANG Y L, ZONG Z M. Sequential extraction and thermal dissolution of Shengli lignite[J]. Fuel Process Technol, 2015,135(7):20-24.  

    10. [10]

      ZHAO Y P, TIAN Y J, DING M, DOU Y Q, WEI X Y, FAN X, HE X F, ZONG Z M. Difference in molecular composition of soluble organic species from two Chinese lignites with different geologic ages[J]. Fuel, 2015,148(5):120-126.  

    11. [11]

      LU H, PENG P A, HSU C S. Geochemical explication of sulfur organics characterized by Fourier transform ion cyclotron resonance mass spectrometry on sulfur-rich heavy oils in Jinxian Sag, Bohai bay basin, Northern China[J]. Energy Fuels, 2013,27(10):5861-5866. doi: 10.1021/ef4013906

    12. [12]

      LI Z K, ZONG Z M, YAN H L, WANG Y G, NI H X, WEI X Y, LI Y H. Characterization of acidic species in ethanol-soluble portion from Zhaotong lignite ethanolysis by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Fuel Process Technol, 2014,128(12):297-302.  

    13. [13]

      BAE E, NA J G, CHUNG S H, KIM H S, KIM S W. Identification of about 30000 chemical components in shale oils by electrospray ionization (ESI) and atmospheric pressure photoionization (APPI) coupled with 15 T Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and a comparison to conventional oil[J]. Energy Fuels, 2010,24(4):2563-2569. doi: 10.1021/ef100060b

    14. [14]

      HEADLEY J V, KUMAR P, DALAI A, PERU K M, BAILEY J, MCMARTIN D W, ROWLAND S M, RODGERS R P, MARSHALL A G. Fourier transform ion cyclotron resonance mass spectrometry characterization of treated Athabasca oil sands processed waters[J]. Energy Fuels, 2015,29(5):2768-2773. doi: 10.1021/ef502007b

    15. [15]

      YAN H L, ZONG Z M, LI Z K, WEI X Y. Characterization of bio-oils from the alkanolyses of sweet sorghum stalk by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. Fuel, 2015,160(11):596-604.  

    16. [16]

      NOWICKI P, PIETRZAK R, WACHOWSKA H. X-ray photoelectron spectroscopy study of nitrogen-enriched active carbons obtained by ammoxidation and chemical activation of brown and bituminous coals[J]. Energy Fuels, 2010,24(2):1197-1206. doi: 10.1021/ef900932g

    17. [17]

      GENG W H, KUMABE Y, NAKAJIMA T, TAKANASHI H, OHKI A. Analysis of hydrothermally-treated and weathered coals by X-ray photoelectron spectroscopy[J]. Fuel, 2009,88(4):644-649. doi: 10.1016/j.fuel.2008.09.025

    18. [18]

      FAN X, ZHU J L, ZHENG A L, WEI X Y, ZHAO Y P, CAO J P, ZHAO W, LU Y, CHEN L, YOU C Y. Rapid characterization of heteroatomic molecules in a bio-oil from pyrolysis of rice husk using atmospheric solids analysis probe mass spectrometry[J]. J Anal Appl Pyrolysis, 2015,115(9):16-23.  

    19. [19]

      SHI Q, PAN N, LONG H Y, CUI D C, GUO X F, LONG Y H, CHUNG K H, ZHAO S Q, XU C M, HSU C S. Characterization of middle-temperature gasification coal tar. Part 3:Molecular composition of acidic compounds[J]. Energy Fuels, 2013,27(1):108-117. doi: 10.1021/ef301431y

  • 加载中
    1. [1]

      Liying OuZhenluan XueBo LiZhiwei JinJiaochan ZhongLixia YangPenghui ShaoShenglian Luo . Nitrogen-containing linkage-bonds in covalent organic frameworks: Synthesis and applications. Chinese Chemical Letters, 2025, 36(6): 110294-. doi: 10.1016/j.cclet.2024.110294

    2. [2]

      Kezhen QiShu-yuan LiuRuchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460

    3. [3]

      Hong Chen Mao-Yin Ran Long-Hua Li Xin-Tao Wu Hua Lin . [Cs14Cl][Tm71Se110]: An unusual salt-inclusion chalcogenide containing different valent Tm centers and ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100397-100397. doi: 10.1016/j.cjsc.2024.100397

    4. [4]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    5. [5]

      Yu YaoJinqiang ZhangYantao WangKunsheng HuYangyang YangZhongshuai ZhuShuang ZhongHuayang ZhangShaobin WangXiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633

    6. [6]

      Yuetong GaoTong MuXinyue HuYang PangChengji Zhao . Facile synthesis of all-carbon fluorinated backbone polymers containing sulfide linkage as proton exchange membranes for fuel cells. Chinese Chemical Letters, 2025, 36(6): 110763-. doi: 10.1016/j.cclet.2024.110763

    7. [7]

      Xue-Jiao WangJun-Li XinHong XiangZe-Yu ZhaoYu-Hang HeHaibo WangGuangyao MeiYi-Cheng MaoJuan XiongJin-Feng Hu . Holotrichones A and B, potent anti-leukemic lindenane-type sesquiterpene trimers with unprecedented complex carbon skeletons from a rare Chloranthus species. Chinese Chemical Letters, 2024, 35(12): 109682-. doi: 10.1016/j.cclet.2024.109682

    8. [8]

      Fabrice Nelly HabarugiraDucheng YaoWei MiaoChengcheng ChuZhong ChenShun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886

    9. [9]

      Chao-Long ChenRong ChenLa-Sheng LongLan-Sun ZhengXiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795

    10. [10]

      Xiaxia XingXiaoyu ChenZhenxu LiXinhua ZhaoYingying TianXiaoyan LangDachi Yang . Polyethylene imine functionalized porous carbon framework for selective nitrogen dioxide sensing with smartphone communication. Chinese Chemical Letters, 2024, 35(9): 109230-. doi: 10.1016/j.cclet.2023.109230

    11. [11]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    12. [12]

      Yanan ZhouLi ShengLanlan ChenWenhua ZhangJinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588

    13. [13]

      Tianyi YangFangxi SuDehuan ShiShenghong ZhongYalin GuoZhaohui LiuJianfeng Huang . Efficient propane dehydrogenation catalyzed by Ru nanoparticles anchored on a porous nitrogen-doped carbon matrix. Chinese Chemical Letters, 2025, 36(2): 110444-. doi: 10.1016/j.cclet.2024.110444

    14. [14]

      Yan WangJiaqi ZhangXiaofeng WuSibo WangMasakazu AnpoYuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439

    15. [15]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    16. [16]

      Jiaojiao LiangYouming PengZhichao XuYufei WangMenglong LiuXin LiuDi HuangYuehua WeiZengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452

    17. [17]

      Zhong-Hui SunYu-Qi ZhangZhen-Yi GuDong-Yang QuHong-Yu GuanXing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590

    18. [18]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    19. [19]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    20. [20]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

Metrics
  • PDF Downloads(0)
  • Abstract views(1026)
  • HTML views(102)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return