Citation: Agüero Fabiola Nerina, Alonso Jose Antonio, Fernández-Díaz Maria Teresa, Cadus Luis Eduardo. Ni-based catalysts obtained from perovskites oxides for ethanol steam reforming[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(11): 1332-1341. shu

Ni-based catalysts obtained from perovskites oxides for ethanol steam reforming

  • Corresponding author: Cadus Luis Eduardo, lcadus@unsl.edu.ar
  • Received Date: 29 June 2018
    Revised Date: 19 September 2018

Figures(7)

  • Perovskites as host structures of cations were used in order to generate in situ active and stable catalysts for ethanol steam reforming. For this purpose, La1-xMgxAl1-yNiyO3 (x=0.1; y=0, 0.1, 0.2, 0.3) perovskites were synthetized by the citrate method. Ni segregation is evident for a substitution level higher than 0.2. The segregation of Ni as NiO generated species interacts with different metal-support after the reduction step. The y=0.1 catalyst presents the highest H2 yield value about 85% during reaction time, with low mean values of CH4 and CO selectivities of 3.4% and 11%, respectively and a low carbon formation. The better performance of y=0.1 catalyst could be attributed to the minor proportion of segregated phases, thus a controlled expulsion of Ni is successfully reached.
  • 加载中
    1. [1]

      CHORKENDORFF I, NIEMANTSVERDRIET J W. Concepts of Modern Catalysis and Kinetics[M]. Wiley Editorial. 2003.

    2. [2]

      ARAMOUNI A K, TOUMA J G, TARBOUSH B A, ZEAITER J M. Catalyst design for dry reforming of methane:Analysis review[J]. Renewable Sustainable Energy Rev, 2017,82(part 3):2570-2585.

    3. [3]

      CHOI S O, MOON S H. Performance of La1-xCexFe0.7Ni0.3O3 perovskite catalysts for methane steam reforming[J]. Catal Today, 2009,146(1):148-153.  

    4. [4]

      PALCHEVA R, OLSBYE U, PALCUT M, RAUWEL P, TYULIEV G, VELINOV N, FJELLVÄG H H. Rh promoted La0.75Sr0.25(Fe0.8Co0.2)1-xGaxO3-δ perovskite catalysts:Characterization and catalytic performance for methane partial oxidation to synthesis gas[J]. Appl Surf Sci, 2015,357(part A):45-54.  

    5. [5]

      NI M, LEUNG D, LEUNG M. A review on reforming bio-ethanol for hydrogen production[J]. Int J Hydrogen Energy, 2007,32(15):3238-3247. doi: 10.1016/j.ijhydene.2007.04.038

    6. [6]

      PEREIRA E B, RAMÍREZ D E L A, PISCINA P, MARTI S, HOMS N. H2 production by oxidative steam reforming of ethanol over K promoted Co-Rh/CeO2-ZrO2 catalysts[J]. Energy Environ Sci, 2010,3:487-493. doi: 10.1039/b924624j

    7. [7]

      HAN X, YU Y, HE H, SHAN W. Hydrogen production from oxidative steam reforming of ethanol over rhodium catalysts supported on Ce-La solid solution[J]. Int J Hydrogen Energy, 2013,38(25):10293-10304. doi: 10.1016/j.ijhydene.2013.05.137

    8. [8]

      COSTA L O, VASCONCELOS S M, PINTO A L, SILVA A M, MATTOS L V, NORONHA F B. Rh/CeO2 catalyst preparation and characterization for hydrogen production from ethanol partial oxidation[J]. J Mater Sci, 2008,43(2):440-449. doi: 10.1007/s10853-007-1982-2

    9. [9]

      KRALEVA E, SOKOLOV S, NASILLO G, BENTRUP U, EHRICH H. Catalytic performance of CoAlZn and NiAlZn mixed oxides in hydrogen production by bio-ethanol partial oxidation[J]. Int J Hydrogen Energy, 2014,39(1):209-220. doi: 10.1016/j.ijhydene.2013.10.072

    10. [10]

      BEYHAN S, LÉGER J M, KADIRGAN F. Understanding the influence of Ni, Co, Rh and Pd additionto PtSn/C catalyst for the oxidation of ethanol by in situ Fourier transform infrared spectroscopy[J]. Appl Catal B:Environ, 2014,144:66-74. doi: 10.1016/j.apcatb.2013.07.020

    11. [11]

      CHEN H Q, YU H, YANG G X, PENG F, WANG H J, WANG J. Auto-thermal ethanol micro-reformer with a structural Ir/La2O3/ZrO2 catalyst for hydrogen production[J]. Chem Eng J, 2011,167(1):322-327. doi: 10.1016/j.cej.2010.12.077

    12. [12]

      SILVA A M, COSTA L O, BARANDAS A P, BORGES L E, MATTOS L V, NORONHA F B. Effect of the metal nature on the reaction mechanism of the partial oxidation of ethanol over CeO2-supported Pt and Rh catalysts[J]. Catal Today, 2008,133-135:755-761. doi: 10.1016/j.cattod.2007.12.103

    13. [13]

      FRUSTERI F, FRENI S. Bio-ethanol, a suitable fuel to produce hydrogen for a molten carbonate fuel cell[J]. J Power Sources, 2007,173(1):200-209. doi: 10.1016/j.jpowsour.2007.04.065

    14. [14]

      BION N, EPRON F, DUPREZ D. Bioethanol reforming for H2 production. A comparison with hydrocarbon reforming[J]. Catalysis, 2010,22:1-55.  

    15. [15]

      HARYANTO A, FERNANDO S, MURALI N, ADHIKARI S. Current status of hydrogen production techniques by steam reforming of ethanol:A Review[J]. Energy Fuels, 2005,19(5):2098-2106. doi: 10.1021/ef0500538

    16. [16]

      BENGAARD H S, NORSKOV J K, SEHESTED J, CLAUSEN B S, NIELSEN L P, MOLENBROEK A M, ROSTRUP-NIELSEN J R. Steam reforming and graphite formation on Ni catalysts[J]. J Catal, 2002,209(2):365-384. doi: 10.1006/jcat.2002.3579

    17. [17]

      BOROWIECKI T. Nickel catalysts for steam reforming of hydrocarbons; size of crystallites and resistance to coking[J]. Appl Catal, 1982,4:223-231. doi: 10.1016/0166-9834(82)80104-8

    18. [18]

      AGÜERO F, MORALES M R, LARREGOLA S, IZURIETA E, LOPEZ E, CADUS L E. La1-xCaxAl1-yNiyO3 perovskites used as precursors of nickel based catalysts for ethanol steam reforming[J]. Int J Hydrogen Energy, 2015,4015510. doi: 10.1016/j.ijhydene.2015.08.051

    19. [19]

      COURTY P, AJOT H, MARCILLY C, DELMON B. Oxydes mixtes ou en solution solide sous forme très divisé e obtenus par décomposition thermique de précurseurs amorphes[J]. Powder Technol, 1973,7(1):21-38. doi: 10.1016/0032-5910(73)80005-1

    20. [20]

      RIETVELD H M. A profile refinement method for nuclear and magnetic structures[J]. Appl Crystallogr, 1969,2:65-71. doi: 10.1107/S0021889869006558

    21. [21]

      RODRIGUEZ CARVAJAL. Recent advances in magnetic-structure determination by neutron power diffraction[J]. Phys B, 1993,192(1/2):55-69.  

    22. [22]

      WU Y J, DÍAZ ALVARADO F, SANTOS J C, GRACIA F, CUNHA A F, RODRIGUES A E. Sorption-enhanced steam reforming of ethanol:thermodynamic comparison of CO2 sorbents[J]. Chem Eng Technol, 2012,35(5):847-858. doi: 10.1002/ceat.v35.5

    23. [23]

      CUNHA A F, WU Y J, DÍAZ ALVARADO F A, SANTOS J C, VAIDYA P D, RODRIGUES A E. CAN, Steam reforming of ethanol on a Ni/Al2O3 catalyst coupled with a hydrotalcite-like sorbent in a multilayer pattern for CO2 uptake[J]. Can J Chem Eng, 2012,90(6):1514-1526. doi: 10.1002/cjce.v90.6

    24. [24]

      SÁNCHEZ-SÁNCHEZ M C, NAVARRO R M, FIERRO J L G. Ethanol steam reforming over Ni/MxOy-Al2O3 (M-Ce, La, Zr and Mg) catalysts:influence of support on the Hydrogen production[J]. Int J Hydrogen Energy, 2007,321462. doi: 10.1016/j.ijhydene.2006.10.025

    25. [25]

      HARDINI D, YOON C, HON J, YOON S, NAM S, LIM T. Influence of preparation methods and OSC on activity and stability[J]. Catal Lett, 2012,142(2):205-212. doi: 10.1007/s10562-011-0746-4

    26. [26]

      RIBEIRO N, NETO R, MOYA S, SOUZA M, SCHMAL M. Synthesis of NiAl2O4 with high surface area as precursor of Ni nanoparticles for hydrogen production[J]. Int J Hydrogen Energy, 2010,35(21):11725-11732. doi: 10.1016/j.ijhydene.2010.08.024

    27. [27]

      GALLEGO G S, MONDRAGÓN F, BARRAULT J, TATIBOUËT J-M, BATIOT-DUPEYRAT C. CO2 reforming of CH4 over La-Ni based perovskite precursors[J]. Appl Catal A:Gen, 2006,311(1):164-171.

    28. [28]

      SIERRA GALLEGO G, MONDRAGON F, TATIBOUËT J-M, BARRAULT J, BATIOT-DUPEYRAT C. Carbon dioxide reforming of methane over La2NiO4 as catalyst precursor and characterization of carbon deposition[J]. Catal Today, 2008,133-135:200-209. doi: 10.1016/j.cattod.2007.12.075

    29. [29]

      JIRATOVA K, MIKULOVA J, KLEMPA J, GRYGAR T, BASTL Z, KOVANDA F. Modification of Co-Mn-Al mixed oxide with potassium and its effect on deep oxidation of VOC[J]. Appl Catal A:Gen, 2009,361:106-116. doi: 10.1016/j.apcata.2009.04.004

  • 加载中
    1. [1]

      Xin Dong Tianqi Chen Jing Liang Lei Wang Huajie Wu Zhijin Xu Junhua Luo Li-Na Li . Structure design of lead-free chiral-polar perovskites for sensitive self-powered X-ray detection. Chinese Journal of Structural Chemistry, 2024, 43(6): 100256-100256. doi: 10.1016/j.cjsc.2024.100256

    2. [2]

      Yan Cheng Hai-Quan Yao Ya-Di Zhang Chao Shi Heng-Yun Ye Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358

    3. [3]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    4. [4]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    5. [5]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    6. [6]

      Junchuan Sun Lu Wang . Carbon exchange enabled supra-photothermal methane dry reforming. Chinese Journal of Structural Chemistry, 2024, 43(10): 100330-100330. doi: 10.1016/j.cjsc.2024.100330

    7. [7]

      Weihong DingKaiyue SongXianglong LiXiaoxia Sun . High-temperature-stable RRAMs with well-defined thermal effect mechanisms enable by engineering of robust 2D <100>-oriented organic-inorganic hybrid perovskites. Chinese Chemical Letters, 2025, 36(4): 110495-. doi: 10.1016/j.cclet.2024.110495

    8. [8]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    9. [9]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    10. [10]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    11. [11]

      Shengdong Sun Cheng Wang Shikuo Li . Interfacial channel design on the charge migration for photoelectrochemical applications. Chinese Journal of Structural Chemistry, 2024, 43(12): 100398-100398. doi: 10.1016/j.cjsc.2024.100398

    12. [12]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    13. [13]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    14. [14]

      Yizhe ChenYuzhou JiaoLiangyu SunCheng YuanQian ShenPeng LiShiming ZhangJiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789

    15. [15]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    16. [16]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    17. [17]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    18. [18]

      Zikang HuHengjie ZhangZhengqiu LiTianbao ZhaoZhipeng GuQijuan YuanBaoshu Chen . Multifunctional photothermal hydrogels: Design principles, various functions, and promising biological applications. Chinese Chemical Letters, 2024, 35(10): 109527-. doi: 10.1016/j.cclet.2024.109527

    19. [19]

      Xiaoliu LiangChunliu HuangHui LiuHu ChenJiabao ShouHongwei ChengGang Liu . Natural hydrogel dressings in wound care: Design, advances, and perspectives. Chinese Chemical Letters, 2024, 35(10): 109442-. doi: 10.1016/j.cclet.2023.109442

    20. [20]

      Jia-hui Li Jinkai Qiu Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381

Metrics
  • PDF Downloads(5)
  • Abstract views(455)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return