Citation: Ding Yanan, Xie Congxia, Yu Fengli. Research Progress in Reaction-Controlled Phase Transfer Catalysts[J]. Chemistry, ;2019, 82(3): 231-236. shu

Research Progress in Reaction-Controlled Phase Transfer Catalysts

  • Corresponding author: Yu Fengli, yufliqust@163.com
  • Received Date: 23 October 2018
    Accepted Date: 3 December 2018

Figures(3)

  • The reaction-controlled phase-ransfer catalysis has the advantages of homogeneous and heterogeneous catalysis. It can resolve the problems of low catalytic activity and recovery difficulty of the catalyst, which meets environmentally friendly requirements. So, the reaction-controlled phase-transfer catalysis has been receiving much attention. The reaction-controlled phase-transfer phenomenon is closely related to the structures of catalyst anion and cation, and reaction conditions such as solvent. In this paper, the structural features of anion and cation of reaction-controlled phase-transfer catalysts in the widely used reactions are reviewed. Finally, the possible problems and innovation of the current reaction-controlled phase-transfer catalytic systems are proposed, and the development prospects are also forecasted.
  • 加载中
    1. [1]

      N Mizuno, M Misono. Chem. Rev., 1998, 98(1):199~217. 

    2. [2]

      A Dolbecq, E Dumas, C R Mayer et al. Chem. Rev., 2010, 110(10):6009~6048. 

    3. [3]

      N Mizuno, K Kamata. Coord. Chem. Rev., 2011, 255(19):2358~2370.

    4. [4]

      N Narkhede, S Singh, A Patel. Green Chem., 2014, 17(1):89~107. 

    5. [5]

      N Mizuno, K Kamata, K Yamaguchi. Top. Catal., 2010, 53(13):876~893. 

    6. [6]

      N Mizuno, K Yamaguchi, K Kamata. Catal. Surv. Asia, 2011, 15(2):68~79. 

    7. [7]

      Y Zhou, G J Chen, Z Y Long et al. RSC Adv., 2014, 45(50):42092~42113.

    8. [8]

      V K Dioumaev, R M Bullock. Nature, 2003, 424(6948):530~532. 

    9. [9]

      M Süβner, H Plenio. Angew. Chem. Int. Ed., 2005, 44(42):6885~6888. 

    10. [10]

      Z W Xi, N Zhou, Y Sun et al. Science, 2001, 292(5519):1139~1141. 

    11. [11]

      H Hamamoto, Y Suzuki, Y M A Yamada et al. Angew. Chem. Int. Ed., 2005, 44:4612~4616.

    12. [12]

      Y Leng, J Wang, D R Zhu et al. Angew. Chem., 2009, 121(1):174~177. 

    13. [13]

      P P Zhao, J Wang, G J Chen et al. Catal. Sci. Technol., 2013, 3(5):1394~1404. 

    14. [14]

      Y Yang, B Zhang, Y Z Wang et al. J Am. Chem. Soc., 2013, 135:14500~14503. 

    15. [15]

      M D Zhou, M J Liu, L L Huang et al. Green Chem., 2015, 17(2):1186~1193. 

    16. [16]

      J T Mei, Y Yang, Y Xue et al. J. Mol. Catal. A, 2003, 191(1):135~139. 

    17. [17]

       

    18. [18]

      Y J Chen, R Tan, W G Zheng et al. Catal. Sci. Technol., 2014, 4(11):4084~4092. 

    19. [19]

      E Kumacheva. Nat. Mater., 2012, 11(8):665~666. 

    20. [20]

      Y J Men, H Schlaad, J Y Yuan. ACS Macro Lett., 2013, 2(5):456~459. 

    21. [21]

      J L Zhang, M X Zhang, K J Tang et al. Small, 2014, 10(1):32~46. 

    22. [22]

      J L Pan, B J Zhang, X W Jiang et al. Macromol. Rapid Commun., 2014, 35(18):1615~1621. 

    23. [23]

      F L Yu, R Zhang, C X Xie et al. Green Chem., 2010, 12:1196~1200. 

    24. [24]

       

    25. [25]

      Y X Qiao, Z S Hou, H Li et al. Green Chem., 2009, 11(12):1955~1960. 

    26. [26]

      H Li, Y X Qiao, L Hua et al. ChemCatChem, 2010, 2(9):1165~1170. 

    27. [27]

      Y Sun, Z W Xi, G Y Cao. J. Mol. Catal. A, 2001, 166(2):219~224. 

    28. [28]

      N Zhou, Z W Xi, G Y Cao et al. Appl. Catal. A, 2003, 250(2):239~250. 

    29. [29]

      J B Gao, Y Y Chen, B Han et al. J. Mol. Catal. A, 2004, 210:197~204. 

    30. [30]

      P T Witte, P L Alsters. Org. Process Res. Dev., 2004, 8:524~531. 

    31. [31]

      M L Guo. Green Chem., 2004, 6(6):271~273. 

    32. [32]

      X G Yang, S Gao, Z W Xi. Org. Process Res. Dev., 2005, 9(3):294~296. 

    33. [33]

      Y Ding, W Zhao, H Hua et al. Green Chem., 2008, 10(9):910~913. 

    34. [34]

      Z H Weng, J Y Wang, X G Jian. Catal. Commun., 2008, 9(8):1688~1691. 

    35. [35]

      W H Zhang, Y Leng, D R Zhu et al. Catal. Commun., 2010, 11(3):151~154.

    36. [36]

      E Rafiee, S Eavani. Catal. Commun., 2012, 25:64~68. 

    37. [37]

      H Zheng, Z Sun, X L Chen et al. Appl. Catal. A, 2013, 467(10):26~32.

    38. [38]

      X X Han, W Yan, K K Chen et al. Appl. Catal. A, 2014, 485:149~156. 

    39. [39]

      M Y Huang, X X Han, C T Hung et al. J. Catal., 2014, 320(1):42~51. 

    40. [40]

      L Gao, T P Liu, X C Tao et al. Tetrahed. Lett., 2016, 57(44):4905~4909. 

    41. [41]

      R Yahya, M Craven, E F Kozhevnikova et al. Catal. Sci. Technol., 2015, 5(2):818~821. 

    42. [42]

      Y Liu, Z Wei, Y Liu et al. Chem. Res. Chin. Univ., 2018, 34(3):333~337. 

    43. [43]

      Y Leng, J Liu, P P Jiang et al. RSC Adv., 2012, 2(31):11653~11656. 

    44. [44]

      Y J Chen, R Tan, W G Zheng et al. Catal. Sci. Technol., 2014, 4(11):4084~4092. 

    45. [45]

      D L Long, E Burkholder, L Cronin. Chem. Soc. Rev., 2007, 36:105~121. 

    46. [46]

      C J Gao, G J Chen, X C Wang et al. Chem. Commun., 2015, 51(24):4969~4972. 

    47. [47]

      G J Chen, Y Zhou, Z Y Long et al. ACS Appl. Mater. Interf., 2014, 6(6):4438~4446. 

    48. [48]

      Y F Song, R Tsunashima. Chem. Soc. Rev., 2012, 41(22):7384~7402. 

    49. [49]

      X C Wang, Y Zhou, G J Chen et al. ACS Sustain. Chem. Eng., 2014, 2(7):1918~1927. 

    50. [50]

      T R Amarante, P Neves, A A Valente et al. J. Catal., 2016, 340:354~367. 

    51. [51]

      R Malakooti, A Feghhi. New J. Chem., 2017, 41(9):3405~3413. 

    52. [52]

      A Rezaeifard, M Jafarpour, R Haddad et al. Catal. Commun., 2017, 95(10):88~91.

  • 加载中
    1. [1]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    2. [2]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    3. [3]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    4. [4]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    6. [6]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    7. [7]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    8. [8]

      Qiaojia GUOJunkai CAIChunying DUAN . Effects of anions on the structural regulation of Zn-salen-modified metal-organic cage. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2203-2211. doi: 10.11862/CJIC.20240209

    9. [9]

      Yidan Jing Xiaomin Zhang Nan Xu . Design and Practice of Chemical Science Popularization Experiments Based on the Concept of Controlling Variables: Taking the “Recovery of Silver from Silver-Containing Wastewater” Science Popularization Project as an Example. University Chemistry, 2025, 40(4): 346-352. doi: 10.12461/PKU.DXHX202405146

    10. [10]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    11. [11]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    12. [12]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    13. [13]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    17. [17]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    18. [18]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    19. [19]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    20. [20]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

Metrics
  • PDF Downloads(5)
  • Abstract views(546)
  • HTML views(93)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return