Citation: LIU Li-hua, CHU Mo, DANG Tong-tong, QU Yang, SUN Ren-hui, CHANG Zhi-bing. Effect of moisture adsorption and air pre-oxidation on spontaneous combustion liability of upgraded lignite[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(10): 1153-1159. shu

Effect of moisture adsorption and air pre-oxidation on spontaneous combustion liability of upgraded lignite

  • Corresponding author: CHU Mo, cm@cumtb.edu.cn
  • Received Date: 28 March 2016
    Revised Date: 15 June 2016

Figures(7)

  • The effect of moisture adsorption and air pre-oxidation on the spontaneous combustion liability of lignite upgraded was investigated for the purposes of obtaining the characteristics and mechanism of the spontaneous combustion liability during storage outside. By a testing apparatus for spontaneous combustion liability, the crossing-point temperature (CPT) for calculating the aggregative indicator FCC was measured for the fresh samples upgraded at the temperature ranging from 105℃ to 900℃ and for the upgraded samples suffering moisture adsorption and pre-oxidization. The changes of chemical structure were analyzed by Fourier transform infrared spectroscopy and energy dispersive spectrometer, and the evolution of pore structure was identified by physical adsorption experiments, and the difference of wetting heat for moisture absorption was determined by the micro calorimeter. The results show that the spontaneous combustion liability of fresh upgraded lignite is reduced with increasing upgrading temperature. But the adsorbing moisture and pre-oxidation make the spontaneous combustion liability of samples upgraded at 200-500℃ increase obviously comparing with the corresponding fresh upgraded samples. Pre-oxidation can increase the elemental oxygen content and the amount of oxidation active groups on the surface of samples. The oxidation active groups of aliphatic side chains, oxygen-containing functional groups, new free radicals from upgrading process, and the increase of specific surface area after deep upgrading all intensify the pre-oxidation and spontaneous combustion of the upgraded samples. The heat of wetting from adsorbing moisture not only further deepens the pre-oxidation, but also enhances the spontaneous combustion liability remarkably for the upgraded samples adsorbing more moisture.
  • 加载中
    1. [1]

      ZHAO H, YU J L, LIU J S, TAHMASEBI A. Experimental study on the self-heating characteristics of indonesian lignite during low temperature oxidation[J]. Fuel, 2015,150:55-63. doi: 10.1016/j.fuel.2015.01.108

    2. [2]

      LIU Peng, ZHOU Yang, LU Xi-lan, WANG Lan-lan, PAN Tie-ying, ZHANG De-xiang. Structural evolution of Xianfeng lignite during hydrothermal treatment[J]. J Fuel Chem Technol, 2016,44(2):129-137.  

    3. [3]

      GUO Cai-ying.Passivation process and passivation system of active coke:CN, 20091003089.6[P].2010-07-21.

    4. [4]

      ZHAO Xu, TAN Yong-peng, ZHAN Zhong-fu, GAO Yan.New technology for passivation refining of dried formed coal or semi coke of lignite:CN, 201310129039.9[P].2014-10-15.

    5. [5]

      NIMAJE D S, TRIPATHY D P. Characterization of some Indian coals to assess their liability to spontaneous combustion[J]. Fuel, 2016,163:139-147. doi: 10.1016/j.fuel.2015.09.041

    6. [6]

      FEI Y, AZIZ A A, NASIR S, JACKSON W R, MARSHALL M, HULSTON J, CHAFFEE A L. The spontaneous combustion behavior of some low rank coals and a range of dried products[J]. Fuel, 2009,88(9):1650-1655. doi: 10.1016/j.fuel.2009.03.017

    7. [7]

      DENG Jun, ZHAO Jing-yu, ZHANG Yan-ni, WU Kang, ZHANG Dan-dan, ZHAO Meng-ye. Experimental study on spontaneous combustion characteristics of secondary oxidation of Jurassic coal[J]. Chin Saf Sci J, 2014,24(1):34-40.  

    8. [8]

      ZHANG Xin-hai, LI Qing-wei. Experiment study on spontaneous combustion characteristics of pre-oxidized coal[J]. Coal Sci Technol, 2014,42(11):37-40.  

    9. [9]

      HU Zheng-guo, ZHONG Xiao-xing, WANG De-ming, QI Xu-yao, GU Jun-jie, HU Chao-shi. Analysis on the irrationality of evaluation method for coal spontaneous combustion tendentiousness[J]. Coal Sci Technol, 2008,36(8):49-52.  

    10. [10]

      WANG Hai-hui. Test methods for assessing susceptibility of coals to spontaneous combustion:A literature review[J]. J Saf Environ, 2009,9(2):132-137.  

    11. [11]

      OGUNSOLA O I, MIKULA R J. A study of spontaneous combustion characteristics of Nigerian coals[J]. Fuel, 1991,70(2):258-261. doi: 10.1016/0016-2361(91)90162-4

    12. [12]

      WANG Yin, WANG Hai-hui. Physical nature of the indexes for ranking self-heating tendency of coal based on the conventional crossing point temperature technique[J]. J Chin Coal Soc, 2015,40(2):377-382.  

    13. [13]

      ZHAO Yi.In-situ Micro-FTIR spectroscopic observation on the hydration process of polyporaceae fungi[D].Beijing:Beijing Institute of Technology, 2015.

    14. [14]

      KORKMAZ F, KOSTER S, YILDIZÖ , MANTELE W. In situ opening/closing of OmpG from E.coli and the splitting of β-sheet signals in ATR-FTIR spectroscopy[J]. Spectrochim Acta, Part A, 2012,91:395-401. doi: 10.1016/j.saa.2012.01.025

    15. [15]

      ZHANG Jin-ping, LI Dong, ZHANG Cheng, QIU Yong-qi, YIN Li-bao, XU Qi-sheng, CHEN Gang. Physical/chemical structure evolution and combustion characteristics of mild thermally upgraded lignite[J]. J Chin Coal Soc, 2015,40(3):671-677.  

    16. [16]

      WU Ai-ping, PAN Tie-ying, SHI Xin-mei, ZHOU Li-fang, LIU Rui-min, ZHANG De-xiang, GAO Jin-sheng. Study on free radicals in low rank coal pyrolysis process[J]. Coal Convers, 2012,35(2):1-5.  

    17. [17]

      YU Zhen-jie.Study on low-rank coal pyrolysis and characterization of coal tar[D].Shanghai:East China University of Science and Technology, 2013.

    18. [18]

      WANG De-ming.The Coal Oxidation Dynamics:Theory and Application[M].Beijing:Science Press, 2012, 13-25, 184-185, 216-223.

    19. [19]

      XIE Ke-chang.Coal Structure and Its Reactivity[M].Beijing:Science Press, 2002, 226-239.

    20. [20]

      LIU Zhong-Tian.Coal adsorption to oxygen molecules mechanism research[D].Fuxin:Liaoning Technical University, 2007.

    21. [21]

      ZHANG Shuang-quan, JIANG YAO-fa, QIN Zhi-hong, CHENG Xiang-lin.Diversity of Coal-Forming Process and Variation of Coal Quality[M].Xuzhou:China University of Mining and Technology Press, 2013, 196-201.

    22. [22]

      ZHANG J W, CHOI W, ITO T, TAKAHASHI K, FUJITA M. Modelling and parametric investigations on spontaneous heating in coal pile[J]. Fuel, 2016,176:181-189. doi: 10.1016/j.fuel.2016.02.059

    23. [23]

      QU Yang, CHU Mo, DING Li, ZHANG Hui-hui, WANG Fang. Fragmentation characteristic of lignite during heat upgrading[J]. J China Univ Min Technol, 2014,43(3):508-513.  

    24. [24]

      CHNRISTIE G B Y, MAINWARING D E. Oxidative and immersional heating on low rank coal surfaces[J]. Fuel, 1992,71(4):443-447. doi: 10.1016/0016-2361(92)90035-M

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    3. [3]

      Guoze YanBin ZuoShaoqing LiuTao WangRuoyu WangJinyang BaoZhongzhou ZhaoFeifei ChuZhengtong LiYamauchi YusukeMelhi SaadXingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 2404006-0. doi: 10.3866/PKU.WHXB202404006

    4. [4]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    5. [5]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    6. [6]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    7. [7]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    8. [8]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    9. [9]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    10. [10]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    11. [11]

      Xianyong Lu Tao Hu . Developing an Innovative Inorganic Chemistry Teaching Model Based on Aerospace Specialty Characteristics. University Chemistry, 2025, 40(7): 127-131. doi: 10.12461/PKU.DXHX202409037

    12. [12]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    13. [13]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    14. [14]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    15. [15]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    16. [16]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    17. [17]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    18. [18]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    19. [19]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    20. [20]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

Metrics
  • PDF Downloads(0)
  • Abstract views(623)
  • HTML views(68)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return