Citation: PENG Hao, WANG Bao-feng, YANG Feng-ling, CHENG Fang-qin. Study on the environmental effects of heavy metals in coal gangue and coal combustion by ReCiPe2016 for life cycle impact assessment[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(11): 1402-1408. shu

Study on the environmental effects of heavy metals in coal gangue and coal combustion by ReCiPe2016 for life cycle impact assessment

  • Corresponding author: WANG Bao-feng, wangbaofeng@sxu.edu.cn CHENG Fang-qin, cfangqin@sxu.edu.cn
  • Received Date: 11 September 2020
    Revised Date: 10 November 2020

    Fund Project: Natural Science Foundation of Shanxi Province 201901D111006The project was supported by the Foundation of NSFC-Shanxi Coal-based Low Carbon Joint Fund (U1610254) and Natural Science Foundation of Shanxi Province(201901D111006)the Foundation of NSFC-Shanxi Coal-based Low Carbon Joint Fund U1610254

Figures(3)

  • During coal and coal gangue combustion, many heavy metal pollutants are emitted and cause serious environmental problems. In this paper, the environmental effect values of As and Pb emission during coal gangue and coal combustion in the 330 MW pulverized coal boiler, 50 kW circulated fluidized bed boiler and laboratory were calculated by ReCiPe2016. The results show that when coal combustion in 330 MW pulverized coal boiler, the environment effect values of As for bottom slag, fly ash and flue gas are 3.28×10-6, 2.68×10-5 and 3.89×10-3 respectively; while the environment effect value of Pb for bottom slag, fly ash and flue gas are 8.57×10-6, 6.00×10-5 and 4.83×10-2, respectively. The environmental effects of As and Pb in bottom slag are lower than those in the fly ash; and the environmental effects of As and Pb on air are higher than those on soil. Moreover, when coal combustion in the 50 kW circulated fluidized boiler, the effect values of As and Pb in fly ash on environment are 3.26×10-5 and 1.28×10-4; and the effect values of As and Pb in bottom slag are 1.16×10-6 and 1.43×10-5 respectively. The results also show that when coal gangue combustion in the laboratory, the effect values of As and Pb emission increase with increasing of the temperature; and the proportions of total environmental effects of As and Pb on air are higher than those on soil. Besides that, this study also indicates that the effect of Pb emitted into environment is higher than that of As at the same conditions during coal combustion both in circulated fluidized boiler and pulverized coal boiler. The results may provide basic data for predicting the environmental effects of As and Pb during coal gangue combustion in circulating fluidized bed for life cycle impact assessment.
  • 加载中
    1. [1]

      XIE H, NIE A. The modes of occurrence and washing floatation characteristic of arsenic in coal from western Guizhou[J]. J China Coal Soc, 2010,35(1):117-121.  

    2. [2]

      FENG H. The methods of instrumental analysis on arsenic, mercury, chlorie in coal and the study on the law of migration of arsenic, mercury from coal combustion[D]. Chengdu: Chengdu University of Technology, 2010.

    3. [3]

      KOLKER A, SENIOR C L, QUICK J C. Mercury in coal and the impact of coal quality on mercury emissions from combustion system[J]. Appl Geochem, 2006,21:1821-1836. doi: 10.1016/j.apgeochem.2006.08.001

    4. [4]

      CAO Y, GUO S, ZHAI J. Study on the occurrence modes of mercury and arsenic in coal gangue[J]. Coal Geol Explor, 2017,45(1):26-30.  

    5. [5]

      ZHOU C, LIU G, FANG T, WU D, LAM P K S. Partitioning and transformation behavior of toxic elements during circulated fluidized bed combustion of coal gangue[J]. Fuel, 2014,135:1-8. doi: 10.1016/j.fuel.2014.06.034

    6. [6]

      ZHOU C, LIU G, YAN Z, FANG T, WANG R. Transformation behavior of mineral composition and trace elements during coal gangue combustion[J]. Fuel, 2012,97:244-250.  

    7. [7]

      LU P, XIE J, ZHANG X, WANG J. Release properties of semi-volatile heavy metals in sewage sludge/coal co-incineration under O2/CO2 atmosphere[J]. J Fuel Chem Technol, 2020,48(5):533-542.  

    8. [8]

      ZHANG Y, NAKANO J, LIU L, WANG X, ZHANG Z. Trace element partitioning behavior of coal gangue-fired CFB plant: Experimental and equilibrium calculation[J]. Environ Sci Pollut Res, 2015,22:15469-15478. doi: 10.1007/s11356-015-4738-6

    9. [9]

      LIU H, WANG C, HUANG X, ZHANG Y, SUN X. Volatilization of arsenic in coal during oxy-fuel combustion[J]. J Chem Ind Eng, 2015,66(12):5079-5087.

    10. [10]

      SPÖRL R, MAIER J, BELO L, SHAH K, STANGER R, WALL T, SCHEFFKNECHT G. Mercury and SO3 Emissions in Oxy-Fuel Combustion[J]. Energ Proc, 2014,63:386-402. doi: 10.1016/j.egypro.2014.11.041

    11. [11]

      CHEN Y. Migration law of flue gas mercury from coal-fired plant ULE system[J]. Electron Power Sci Technol Environ Prot, 2017,33(1):9-11.  

    12. [12]

      WANG X, LI S, WANG W, BISWAS P. Mercury oxidation during coal combustion by injection of vanadium pentoxide(V2O5)[J]. Int J Coal Geol, 2017,170:54-59. doi: 10.1016/j.coal.2016.10.009

    13. [13]

      HOFFART A, SEAMES W, KOZLIAK E, RIEDINGER S, FRANCINI J, CARLSON C. A two-step acid mercury removal process for pulverized coal[J]. Fuel, 2006,85:1166-1173. doi: 10.1016/j.fuel.2005.11.020

    14. [14]

      MARCZAK M, WIERONSKA F, BURMISTRZ P, STRUGALA A, KOGUT K, LECH S. Investigation of subbituminous coal and lignite combustion process in terms of mercury and arsenic removal[J]. Fuel, 2019,251:572-579. doi: 10.1016/j.fuel.2019.04.082

    15. [15]

      DUAN P, WANG W, SANG S, MA M, WANG J, ZHANG W. Modes of occurrence and removal of toxic elements from high-uranium coals of Rongyang Mine by stepped release flotation[J]. Energy Sci Eng, 2019,7:1678-1686. doi: 10.1002/ese3.384

    16. [16]

      TIAN L, WU H, DENG H, CHEN D, BAI X, LI J. Ecological risks of heavy metal contamination in soils around the coal gangue dump in the coal mining area[J]. Guizhou Agric Sci, 2013,41(1):123-127.

    17. [17]

      FINKELMAN R B. Potential health impacts of burning coal beds and waste banks[J]. Coal Geol, 2004,59:19-24. doi: 10.1016/j.coal.2003.11.002

    18. [18]

      LIU C, ZHOU C, ZHANG N, PAN J, CAO S, TANG M, JI W, HU T. Modes of occurrence and partitioning behavior and trace elements during coal preparation-A case study in Guizhou Province, China[J]. Fuel, 2019,243:79-87. doi: 10.1016/j.fuel.2019.01.106

    19. [19]

      KONG S, LIU Y, ZENG H, XIE Q, LV X. Current progress in research on the pollution of volatile heavy metals from incineration plant to its ambient soil and vegetation[J]. Ecol Environ Sci, 2010,19(4):985-990.  

    20. [20]

      ZHANG H, ZENG F, FANG Hg, LIN S. Sedimentation and capacity of cadmiunm in Beijing River[J]. Environ Sci Techno, 2010,33(8):120-123.  

    21. [21]

      MAHMUD M A P, HUDA N, FARJANA S H, LANG C. A strategic impact assessment of hydropower plants in alpine and non-alpine areas of Europe[J]. Appl Energ, 2019,250:198-214. doi: 10.1016/j.apenergy.2019.05.007

    22. [22]

      HUIJBREGTS M A J, STEINMANN Z J N, ELSHOUT P M F, STAM G, VERONES F, VIEIRA M, ZIJP M, HOLLANDER A, ZELM R V. ReCiPe2016: A harmonised life cycle assessment method at midpoint and endpoint level(vol 22, pg 138, 2017)[J]. Int J Life Cycle Ass, 2020,25(8):1635-1635. doi: 10.1007/s11367-020-01761-5

    23. [23]

      KLEDJA C, ANDI M, VITO C, MLADEN T. LCA of tomato greenhouse production using spatially differentiated life cycle impact assessment indicators: An Albanian case study[J]. Environ Sci Pollut Res, 2020,27(7):6960-6970. doi: 10.1007/s11356-019-07191-7

    24. [24]

      HUA W, SUN H, QI J, HUANG Z, SHI Z, DUAN L. Emission characteristics of Pb and As from an ultra-low emission coal-fired power plant[J]. Therm Power Gener, 2019,48(10):65-70.

    25. [25]

      XU W, ZENG R. The impacts of the environmental upon arsenic in coal-burned wastes from a power plant[J]. J Minaer Petrol, 2013(4):110-114.

    26. [26]

      ZHUO Y, AN Z, LIU Y, CHEN C. Relation between trace element enrichment and PM10 diameter from coal-fired power plants[J]. J Tsinghua Univ: Nat Sci Ed, 2013,53(3):323-329.  

    27. [27]

      WANG M, ZHANG X, YANG N, LIU K, QIN F, WU Y. Study on the environmental impact of high arsenic coal utilization[J]. Coal Convers, 2012,35(4):77-79.  

    28. [28]

      ZHUANG R, FAN Dn, CHEN Z, XU X, LIN G, WANG H, CAI C, XIONG M, HUANG H, WANG C. Harmless treatment of arsenic-bearing acidic wastewater and speciation and stability analysis of slag[J]. Nonferrous Met, 2018,5:69-73.  

    29. [29]

      CHEN Y, HE K. Analysis of chromium and lead in coal combustion[J]. Mod Business Trade Ind, 2007,6:178-179.

    30. [30]

      ZHAO S, DUAN Y, ZHOU Q, ZHANG J, DU H, TANG H, LV J. Experimental study on trace elements emission characteristics in coal-fired circulating fluidized bed[J]. Proc CSEE, 2017,37(1):193-199.  

    31. [31]

      PENG H, WANG B, YANG F, CAO Y, CHENG F. Emission characteristics of heavy metal during combustion of coal gangue and coal slime[J]. Clean Coal Technol, 2019,25(5):118-124.

  • 加载中
    1. [1]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    2. [2]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    3. [3]

      Xuan SongTeng FuYajie YangYahan KuangXiuli WangYu-Zhong Wang . Spatial-confinement combustion strategy enabling free radicals chemiluminescence direct-measurement in flame-retardant mechanism. Chinese Chemical Letters, 2025, 36(5): 110699-. doi: 10.1016/j.cclet.2024.110699

    4. [4]

      Kunpeng ZhouZhihao ShiXiao-Hong YiPeng WangAiqun LiChong-Chen Wang . MOFs helping heritage against environmental threats. Chinese Chemical Letters, 2025, 36(5): 110226-. doi: 10.1016/j.cclet.2024.110226

    5. [5]

      Jiayi LuYizhang LiHao JiangZhiwen ZhuFengru ZhengQiang Sun . Preparing sub-monolayer metals with continuous coverage spread for high-throughput growth of metal-organic frameworks. Chinese Chemical Letters, 2025, 36(3): 110394-. doi: 10.1016/j.cclet.2024.110394

    6. [6]

      Junhua WangXin LianXichuan CaoQiao ZhaoBaiyan LiXian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180

    7. [7]

      Shili WangMamitiana Roger RazanajatovoXuedong DuShunli WanXin HeQiuming PengQingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140

    8. [8]

      Ling-Ling WuXiangchuan MengQingyang ZhangXiaowan HanFeiya YangQinghua WangHai-Yu HuNianzeng Xing . Heavy-atom engineered hypoxia-responsive probes for precisive photoacoustic imaging and cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108663-. doi: 10.1016/j.cclet.2023.108663

    9. [9]

      Yuqing LiuYu YangYuhan EChanglong PangDi CuiAng Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651

    10. [10]

      Yan ZhuJia LiuMeiheng LvTingting WangDongxiang ZhangRong ShangXin-Dong JiangJianjun DuGuiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446

    11. [11]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    12. [12]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    13. [13]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    14. [14]

      Min FuPan HeSen ZhouWenqiang LiuBo MaShiying ShangYaohao LiRuihan WangZhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434

    15. [15]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    16. [16]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    17. [17]

      Botao GaoHe QiHui LiuJun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598

    18. [18]

      Xin Huang Yi Zhao Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278

    19. [19]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    20. [20]

      Ziyou ZhangTe JiHongliang DongZhiqiang ChenZhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542

Metrics
  • PDF Downloads(1)
  • Abstract views(292)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return