Citation: SUN Bo, YU Xue, WANG Liang, FENG Li-juan, LI Chun-hu. Enhanced visible light photocatalytic oxidative desulfurization by BiOBr-graphene composite[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(9): 1074-1081. shu

Enhanced visible light photocatalytic oxidative desulfurization by BiOBr-graphene composite

  • Corresponding author: WANG Liang, wangliang_good@163.com
  • Received Date: 30 March 2016
    Revised Date: 30 April 2016

Figures(9)

  • A series of BiOBr-graphene photocatalysts was synthesized using hydrothermal method, and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, ultraviolet-visible diffuse reflection spectroscopy (DRS) and photoluminescence (PL) emission spectroscopy. The photocatalysts were evaluated for photocatalytic oxidative desulfurization of model oil. The optimal temperature, graphene loading and the amount of hydrogen peroxide (H2O2) were investigated. The oxidation reactivity of the different sulfur compounds was found to be in the order of DBT>4, 6-DMDBT>BT. Moreover, the mechanism of photocatalytic oxidation of DBT by BiOBr-graphene was proposed based on the present experimental results.
  • 加载中
    1. [1]

      SONG C S. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel[J]. Catal Today, 2003,26(1/4):211-213.  

    2. [2]

      ZHAO D B, WU M, KOU Y, MIN E Z. Ionic liquids: applications in catalysis[J]. Catal Today, 2002,74(1/2):157-159.  

    3. [3]

      ZHANG W, LIU H Y, XIA Q B, LI Z. Enhancement of dibenzothiophene adsorption on activated carbons by surface modification using low temperature oxygen plasma[J]. Chem Eng J, 2012,209:597-600. doi: 10.1016/j.cej.2012.08.050

    4. [4]

      CHEN X C, SHAN Y, ABDELTAWAB A A, Al-DEYAB S S, ZHANG J W, YU L, YU G R. Extractive desulfurization and denitrogenation of fuels using functional acidic ionic liquids[J]. Sep Purif Technol, 2014,133:187-193. doi: 10.1016/j.seppur.2014.06.031

    5. [5]

      GAO X M, FU F, ZHANG L P, LI W H. The preparation of Ag-BiVO4 metal composite oxides and its application in efficient photocatalytic oxidative thiophene[J]. Physica B, 2013,419(21):80-85.  

    6. [6]

      WANG X, LI F, LIU J, KOU C, ZHAO Y, HAO Y, ZHAO D. Preparation of TiO2 in ionic liquid via microwave radiation and in situ photocatalytic oxidative desulfurization of diesel oil[J]. Energy Fuels, 2012,26(11):6777-6782.  

    7. [7]

      ZHANG D. Enhanced photocatalytic activity for titanium dioxide by modification with copper and iron[J]. Transition Met Chem, 2010,35(8):933-938. doi: 10.1007/s11243-010-9414-6

    8. [8]

      WANG C, ZHU W, XU Y. Preparation of TiO2/g-C3N4 composites and their application in photocatalytic oxidative desulfurization[J]. Ceram Int, 2014,40(8):11627-11635. doi: 10.1016/j.ceramint.2014.03.156

    9. [9]

      LEI B X, ZENG L L, ZHANG P, SUN Z F, SUN W, ZHANG X X. Hydrothermal synthesis and photocatalytic properties of visible-light induced BiVO4 with different morphologies[J]. Adv Powder Technol, 2014,25(3):946-951. doi: 10.1016/j.apt.2014.01.014

    10. [10]

      XIAO Y, CHEN C S, CAO S Y, QIAN G P, NIE X B, YU W W. Enhanced sunlight-driven photocatalytic activityof grapheme oxide/Bi2WO6 nanoplates by silicon modification[J]. Ceram Int, 2015,41(8):10087-10094. doi: 10.1016/j.ceramint.2015.04.103

    11. [11]

      ZHANG X M, CHANG X F, GONDAL M A, ZHANG B, LIU Y S, JI G B. Synthesis and photocatalytic activity of graphene/BiOBr composites under visible light[J]. Appl Sur Sci, 2012,258(20):7826-7832. doi: 10.1016/j.apsusc.2012.04.049

    12. [12]

      CUI W Q, AN W J, LIU L, HU J S, LIANG Y H. A novel nanosized BiOBr decorated K2La2Ti3O10 with enhanced photocatalytic properties under visible light[J]. J Solid State Chem, 2014,215(3):94-101.

    13. [13]

      ZHOU W, HU X L, ZHAO X R, JIA M K, HUANG Y P, FANG Y F. Preparation of graphene-BiOBr composite and the enhanced photocatalytic activity under visible-light irradiation[J]. J Mol Catal, 2014,28(4):367-375.  

    14. [14]

      LI J L, LIU X J, HOU X, QIN W, SUN Z, PAN L K. Novel reduced graphene oxide wrapped Bi2.38Mo0.81O6 microspheres for highly efficient visible light photocatalysis[J]. J Colloid Interface Sci, 2015,458:235-240. doi: 10.1016/j.jcis.2015.07.059

    15. [15]

      VADIVEL S, KEERTHI P, VANITHA M, MUTHUKTISHNARAJ A, BALASUBRAMANIAN N. Solvothermal synthesis of Sm-doped BiOBr/RGO compositeas an efficient photocatalytic material for methyl orange degradation[J]. Mater Lett, 2014,128(8):287-290.  

    16. [16]

      AI Z H, HO W K, LEE S C. Efficient visible light photocatalytic removal of NO with BiOBr-graphene nanocomposites[J]. J Phys Chem C, 2011,115(51):25330-25337. doi: 10.1021/jp206808g

    17. [17]

      ZHANG W D, ZHANG Q, DONG F. Visible light photocatalytic removal of NO in air over BiOX (X=Cl, Br, I) single-crystal nanoplates prepared at room temperature[J]. Ind Eng Chem Res, 2013,52(20):6740-6746. doi: 10.1021/ie400615f

    18. [18]

      CHEN C S, CAO S Y, YU W W, XIE X D, LIU Q C, TSANG Y H, XIAO Y. Adsorption, photocatalytic and sunlight-driven antibacterial activity of Bi2WO6/RGO oxide nanoflakes[J]. Vacuum, 2015,116:48-53. doi: 10.1016/j.vacuum.2015.02.031

    19. [19]

      LIU Z S, WU B T, ZHAO Y L, NIU J N, ZHU Y B. Solvothermal synthesis and photocatalytic activity of Al-doped BiOBr microspheres[J]. Ceram Int, 2014,40(4):5597-5603. doi: 10.1016/j.ceramint.2013.10.152

    20. [20]

      LIU Z S, BI Y H, ZHAO Y L, HUANG X, ZHU Y B. Synthesis and photocatalytic property of BiOBr/palygorskite composites[J]. Mater Res Bull, 2014,49(1):167-171.  

    21. [21]

      LI R, FAN C M, ZHANG X C, WANG Y W, WANG Y F, ZHANG H. Preparation of BiOBr thin films with micro-nano-structure and their photocatalytic applications[J]. Thin Solid Films, 2014,562(26):506-512.  

    22. [22]

      JIANG Z, YANG F, YANG G D, KONG L, JONES M O, XIAO T C, EDWARDS P P. The hydrothermal synthesis of BiOBr flakes for visible-light-responsive photocatalytic degradation of methyl orange[J]. J Photochem Photobiol A, 2010,212(1):8-13. doi: 10.1016/j.jphotochem.2010.03.004

    23. [23]

      HE G L, CHEN M J, LIU Y Q, LI X, LIU Y J, XU Y H. Hydrothermal synthesis of FeWO4-graphene composites and their photocatalytic activities under visible light[J]. Appl Sur Sci, 2015,351:474-479. doi: 10.1016/j.apsusc.2015.05.159

    24. [24]

      WANG C, ZHANG G H, ZHANG C, WU M M, YAN M, FAN W Q, SHI W D. A facile one-step solvothermal synthesis of bismuth phosphate-graphene nanocomposites with enhanced photocatalytic activity[J]. J Colloid Interface Sci, 2014,435(435):156-163.

    25. [25]

      BI J H, FANG W, LI L, LI X F, LIU M H, LIANG S J, ZHANG Z Z, HE Y H, LIN H X, WU L, LIU S W, WONG P K. Ternary reduced-graphene-oxide/Bi2MoO6/Au nanocomposites with enhanced photocatalytic activity under visible light[J]. J Alloys Compd, 2015,649:28-34. doi: 10.1016/j.jallcom.2015.07.083

    26. [26]

      HUO Y N, ZHANG J, MIAO M, JIN Y. Solvothermal synthesis of flower-like BiOBr microspheres with highly visible-light photocatalytic performances[J]. Appl Catal B: Environ, 2012,111-112:334-341. doi: 10.1016/j.apcatb.2011.10.016

    27. [27]

      LIU H, SU Y, CHEN Z, JIN Z T, WANG Y. Graphene sheets grafted three-dimensional BiOBr0.2I0.8 microspheres with excellent photocatalytic activity under visible light[J]. J Hazard Mater, 2014,266:75-83. doi: 10.1016/j.jhazmat.2013.12.013

    28. [28]

      SUN Y J, ZHANG W D, XIONG T, ZHAO Z W, DONG F, WANG R Q, HO W K. Growth of BiOBr nanosheets on C3N4 nanosheets to construct two-dimensional nanojunctions with enhanced photoreactivity for NO removal[J]. J Colloid Interface Sci, 2014,418:317-323. doi: 10.1016/j.jcis.2013.12.037

    29. [29]

      SHANG M, WANG W Z, ZHANG L. Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template[J]. J Hazard Mater, 2009,167(1/3):803-809.  

    30. [30]

      XU C Q, WU H H, GU F L. Efficient adsorption and photocatalytic degradation of Rhodamine B under visible light irradiation over BiOBr/montmorillonite composites[J]. J Hazard Mater, 2014,275(2):185-192.  

    31. [31]

      WANG L, JIA T F, YAN X, LI C H, FENG L J. Hydrothermal synthesis of BiOBr/semi-coke composite as an emerging photo-catalyst for nitrogen monoxide oxidation under visible light[J]. Catal Today, 2016,264:257-260. doi: 10.1016/j.cattod.2015.07.008

    32. [32]

      AAZAM E S. Visible light photocatalytic degradationof thiophene using Ag-TiO2/multi walled carbon nanotubes nanocomposite[J]. Ceram Int, 2014,40(5):6705-6711. doi: 10.1016/j.ceramint.2013.11.132

    33. [33]

      ZHAO N, LI S W, ZHANG X, HUANG X Y, WANG J Y, GAO R M, ZHAO J S, WANG J L. Photocatalytic performances of Ag/ALa4Ti4O15(A=Ca, Sr and Ba) on H2O2 oxidative desulfurization[J]. Colloids Sur A, 2015,481:125-132. doi: 10.1016/j.colsurfa.2015.04.028

    34. [34]

      WANG L, CAI H J, LI S Z, MOMINOU N. Ultra-deep removal of thiophene compounds in diesel oil over catalyst TiO2/Ni-ZSM-5 assisted by ultraviolet irradiating[J]. Fuel, 2013,105:752-756. doi: 10.1016/j.fuel.2012.09.069

    35. [35]

      DEDUAL G, MACDONALD M J, ALSHAREEF A, WU Z J, TSANG C W, YIP C K. Requirements for effective photocatalytic oxidative desulfurization of a thiophene-containing solution using TiO2[J]. J Environ Chem Eng, 2014,2(4):1947-1955. doi: 10.1016/j.jece.2014.08.012

    36. [36]

      LORENCON E, ALVES C B, KRAMBROCK K, AVILA S, RESENDE R R, FERLAUTO A S, Lago R M. Oxidative desulfurization of dibenzothiophene over titanate nanotubes[J]. Fuel, 2014,132:53-61. doi: 10.1016/j.fuel.2014.04.020

    37. [37]

      WANG C, ZHU W S, XU Y H, XU H, ZHANG M, CHAO Y H, YINA S, LI H M, WANG J G. Preparation of TiO2/g-C3N4 composites and their application in photocatalytic oxidative desulfurization[J]. Ceram Int, 2014,40(8):11627-11635. doi: 10.1016/j.ceramint.2014.03.156

    38. [38]

      ZAID F M, CHONG F K, MUTALIB I A. Photooxidative-extractive deep desulfurization of diesel using Cu-Fe/TiO2 and eutectic ionic liquid[J]. Fuel, 2015,156:54-62. doi: 10.1016/j.fuel.2015.04.023

    39. [39]

      YAN X M, SU G S, XIONG L. Oxidative desulfurization of diesel oil over Ag-modified mesoporous HPW/SiO2 catalyst[J]. J Fuel Chem Technol, 2009,37(3):318-323. doi: 10.1016/S1872-5813(09)60022-0

  • 加载中
    1. [1]

      Qinwei LuJinjie LuJuying LeiXubiao LuoYanbo Zhou . Cyclodextrin-boosted photocatalytic oxidation for efficient bisphenol A removal. Chinese Chemical Letters, 2025, 36(3): 110017-. doi: 10.1016/j.cclet.2024.110017

    2. [2]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    3. [3]

      Jia-Ru LiNing LiLi-Ling HeJun He . Fluorine-functionalized zirconium-organic cages for efficient photocatalytic oxidation of thioanisole. Chinese Chemical Letters, 2025, 36(1): 109934-. doi: 10.1016/j.cclet.2024.109934

    4. [4]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    5. [5]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    6. [6]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    7. [7]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    8. [8]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    9. [9]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    10. [10]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    11. [11]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    12. [12]

      Gu GongMengzhu LiNing SunTing ZhiYuhao HeJunan PanYuntao CaiLonglu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705

    13. [13]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    14. [14]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    15. [15]

      Huangjie Lu Yingzhe Du Peng Lin Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344

    16. [16]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    17. [17]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    18. [18]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

Metrics
  • PDF Downloads(3)
  • Abstract views(1391)
  • HTML views(489)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return