Citation: WANG Shao-qing, CHEN Hao, LIU Peng-hua, SHA Yu-ming, LIN Yu-han. HRTEM image changes on heating and thermogravimetric characteristics of barkinite[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(2): 138-144. shu

HRTEM image changes on heating and thermogravimetric characteristics of barkinite

  • Corresponding author: WANG Shao-qing, wangzq@cumtb.edu.cn
  • Received Date: 9 August 2017
    Revised Date: 17 October 2017

    Fund Project: the National Natural Science Foundation of China 41102097the National Natural Science Foundation of China 41472132The project was supported by the National Natural Science Foundation of China (41102097, 41472132) and the Yue Qi Young Scholar Project

Figures(4)

  • Barkinite, one of Chinese special maceral, was chosen to study its peculiar thermal characteristics based on thermogravimetric analysis and Rock-eval analysis by comparing vitrinite with bark coal. The changes of chemical structure by heat-treatment of barkinite were discussed by HRTEM. The distribution of functional group of barkinite was studied by Micro-FTIR method. The results show that barkinite has the highest mass loss and the maximum rate of mass loss among these three samples. Barkinite and vitrinite have both orientated layers after temperature above 350℃. With the increasing of temperature, the orientation in aromatic layer is obviously improved and some layers in stacks increase. At the same temperature, for barkinite and vitrinite, three fringes show the greatest abundance, namely, naphthalene, 2×2, and 3×3 fringes, following by 4×4 and 5×5 fringes. Barkinite has a higher abundance of naphthalene than vitrinite and has lower abundances of larger aromatic fringes than vitrinite, for instance, 3×3, 4×4, and 5×5 fringes. With the increasing of temperature, the content of naphthalene in barkinite and vitrinite is increased. Their abundance reaches the highest at 450℃ that is also the temperature of the maximum mass loss rate of barkinite, which indicates that the thermal characteristics of barkinite is related to the abundance of naphthalene in the chemical structure of barkinite.
  • 加载中
    1. [1]

      HSIEH C Y. On lopinite, a new type of coal in China[J]. Bull Geol Soc China, 1933,12(1/2):469-490.  

    2. [2]

      HAN De-xin, REN De-yi, WANG Yan-bing, JIN Kui-li, MAO He-ling, QIN Yong. Coal Petrology of China[M]. Xuzhou:China University of Mining & Technology Press, 1996.

    3. [3]

      GUO Y T, RENTON J J, PENN J H. FTIR microspectroscopy of particular liptinite-(lopinite-) rich, late permian coals from Southern China[J]. Int J Coal Geol, 1996,29(1):187-197.  

    4. [4]

      WANG S Q, TANG Y G, SCHOBERT H H, MITCHELL G D, LIAO Y F, LIU Z Z. A thermal behavior study of Chinese coals with high hydrogen content[J]. Int J Coal Geol, 2010,81:37-44. doi: 10.1016/j.coal.2009.10.012

    5. [5]

      WANG S Q, TANG Y G, SCHOBERT H H, JIANG D, SUN Y B, GUO Y N, SU Y F, YANG S P. Application and thermal properties of hydrogen-rich bark coal[J]. Fuel, 2015,162:121-127. doi: 10.1016/j.fuel.2015.09.010

    6. [6]

      GUO Yan-an, TANG Yue-gang, WANG Shao-qing, LI Wei-wei, JIA Long. Maceral separation of bark liptobiolite ande molecular structure study through high resolution TEM images[J]. J China Coal Soc, 2013,38(6):1019-1024.  

    7. [7]

      GB/T 1558-2001. Classification of macerals for bituminous coal[S].

    8. [8]

      HOWER J C, SUǍREZ-RUIZ I, MASTALERZ M, COOK A C. The investigation of chemical structure of coal macerals via transmitted-light FT-IR microscopy by X. Sun[J]. Spectrochim Acta Part A, 2007,67(5):1433-1437. doi: 10.1016/j.saa.2006.11.034

    9. [9]

      SUN X G. A study of chemical structure in "barkinite" using time-of-flight secondary ion mass spectrometry[J]. Int J Coal Geol, 2001,47(1):1-8. doi: 10.1016/S0166-5162(01)00008-8

    10. [10]

      YU Hai-yang, SUN Xug-uang, JIAO Zong-fu. Characterisistics and implications of micro-FT-IR spectroscopy of barkinite from upper permian coals, South China[J]. Acta Sci Nat Univ Pekin, 2004,40(6):879-885.  

    11. [11]

      SUN X G. The investigation of chemical structure of coal macerals via transmitted-light FT-IR microspectroscopy[J]. Spectrochim Acta Part A, 2005,62(1):557-564.  

    12. [12]

      WU Jun, JIN Ku-li, WANG Kun-hua, GU Shi-ying. Infrared spectroscopy characteristics and forming-hydrocarbon evaluation rule for suberain coal in Southern China[J]. Coal Geol Explor, 1990(5):29-38.  

    13. [13]

      YU Hai-yang, SUN Xu-guang. Research on hydrocarbon generation mechanism of upper permin coals from Leping, Jiangxi, based on ifrared spectroscopy[J]. Spectr Spectr Anal, 2007,27(5):858-862.  

    14. [14]

      WANG S Q, TANG Y G, SCHOBERT H H, JIANG D, GUO X, HUANG F, GUO Y N, SU Y F. Chemical compositional and structural characteristics of late permian bark coals from southern China[J]. Fuel, 2014,126:116-121.  

    15. [15]

      GUO Shao-hui, LI Shu-yuan, QIN Kuang-zong. Structual characterization of kerogen and macerals by ruthenium ion catalyzed oxidation[J]. J Univ Pet, China, Ed Nat Sci, 2000,24(3):54-57.  

    16. [16]

      JIAO Kun, YAO Su-ping, ZHANG Ke, HU Wen-xuan. An atomic force microscopy study on "barkinite" liptobiolith[J]. Geol Rev, 2012,58(4):775-782.  

    17. [17]

      WANG S Q, LIU S M, SUN Y B, JIANG D, ZHANG X M. Investigation of coal components of late permian different ranks bark coal using AFM and micro-FTIR[J]. Fuel, 2017,187:51-57. doi: 10.1016/j.fuel.2016.09.049

    18. [18]

      SHARAM A, KYOTANI T, TOMITA A. A new quantitative approach for microstructural analysis of coal char using HRTEM images[J]. Fuel, 1999,78:1203-1212. doi: 10.1016/S0016-2361(99)00046-0

    19. [19]

      SHARAM A, KYOTANI T, TOMITA A. Direct observation of raw coals in lattice fringe mode using high-resolution transmission electron microscopy[J]. Energy Fuels, 2000,14:1219-1225. doi: 10.1021/ef0000936

    20. [20]

      SHARAM A, KYOTANI T, TOMITA A. Quantitive evaluation of structural transformation in raw coals on heat-treatment using HRTEM technique[J]. Fuel, 2001,80:1467-1473.

    21. [21]

      MATHEWS J P, JONES A D, PAPPANO P J, HURT R, SCHOBERT H H. New insights into coal structure from the combination of HRTEM and laser desorption ionization mass spectrometry[C]//Proceedings of the 11th Int. Conf. on coal Sci: Exploring the horizons of coal. San Francisco, CA: 2001.

    22. [22]

      MATHEWS J P, FERNANDEZ-ALSO V, JONES A D, SCHOBERT H H. Determining the molecular weight distribution of pocahontas No. 3 low-volatile bituminous coal utilizing HRTEM and laser desorption ionization mass spectra data[J]. Fuel, 2010,89:1461-1469.  

    23. [23]

      MATHEWS J P, SHARAM A. The structure alignment of coal and the analogous case of argonne upper freeport coal[J]. Fuel, 2012,95:19-24. doi: 10.1016/j.fuel.2011.12.046

    24. [24]

      VAN NIEKERK D, MATHEWS J P. Molecular representations of Permian-aged vitrinite-rich and inertinite-rich South African coals[J]. Fuel, 2010,89:73-82. doi: 10.1016/j.fuel.2009.07.020

    25. [25]

      HUANG Fan. Organic geochemical characteristics of barkinite in Leping coal[D]. Beijing: China university of Mining & Technology (Beijing), 2015.

    26. [26]

      STACH E, MACHKOWSKY M T H, TEICHMVLLER M, TAYLOR G H, CHANDRA D, TEICHMVLLER R. Stach's Textbook of Coal Petrology[M]. Berlin, Stuttgart:Gebrüder Borntraeger, 1982.

    27. [27]

      WANG S Q, TANG Y G, SCHOBERT H H, GUO Y N, GAO W C, LU X K. FTIR and simultaneous TG/MS/FTIR study of Late Permian coals from Southern China[J]. J Anal Appl Pyrolysis, 2013,100:75-80. doi: 10.1016/j.jaap.2012.11.021

  • 加载中
    1. [1]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    2. [2]

      Yecang Tang Shan Ling Zhen Fang . Exploration of a Hierarchical and Integration-Oriented Talent Training Model in the Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 188-192. doi: 10.12461/PKU.DXHX202405107

    3. [3]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    4. [4]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    5. [5]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    6. [6]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    7. [7]

      Chengbin Gong Guona Zhang Qian Tang Hong Lei Ling Kong Wenshan Ren . Development of a Practical Teaching System for the Applied Chemistry Major Emphasizing “Industry-Education Integration, University-Enterprise Cooperation, and Multi-Dimensional Combination”. University Chemistry, 2024, 39(6): 220-225. doi: 10.3866/PKU.DXHX202309104

    8. [8]

      Wen Shi Zhangwen Wei Mei Pan Chengyong Su . Explorations on the Course Construction of Structural Chemistry Practice and Application Targeting the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 96-100. doi: 10.12461/PKU.DXHX202409036

    9. [9]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    10. [10]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    11. [11]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    12. [12]

      Xiping Luo Xing Wang Shengxiang Yang Jianzhong Guo Yuxuan Wang Xuejuan Yang . Innovative “One Body, Dual Wings” Embedded Talent Cultivation Model: Practice in the Construction of Applied Chemistry Major at Zhejiang Agriculture and Forestry University. University Chemistry, 2024, 39(3): 205-209. doi: 10.3866/PKU.DXHX202309058

    13. [13]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    14. [14]

      Li Zhou Dongyan Tang Yunchen Du . Focusing on the Cultivation of Outstanding Talents: A “Five in One” Approach to Promoting the Construction of Chemical Experimental and Practical Teaching System. University Chemistry, 2024, 39(7): 121-128. doi: 10.12461/PKU.DXHX202405037

    15. [15]

      Xiaolei Jiang Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, 2024, 39(10): 174-181. doi: 10.3866/PKU.DXHX202402052

    16. [16]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    17. [17]

      Zhiguang Xu Xuan Xu Qiong Luo Ganquan Wang Bin Peng . Reform and Practice of Online and Offline Blended Teaching in Structural Chemistry Course. University Chemistry, 2024, 39(6): 195-200. doi: 10.3866/PKU.DXHX202310112

    18. [18]

      Qiong Luo Zhiguang Xu Xuan Xu Ganquan Wang Bin Peng . Exploration of Innovative Teaching in Structural Chemistry Course under the Emerging Engineering Education Model. University Chemistry, 2025, 40(4): 200-207. doi: 10.12461/PKU.DXHX202407016

    19. [19]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    20. [20]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

Metrics
  • PDF Downloads(6)
  • Abstract views(2281)
  • HTML views(107)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return