Citation: Xiaoyan Pei, Zhiyong Li, Yunlei Shi, Xinhua Cao. Phase Transfer of Environmental Responsive Nanoparticles between Two Immiscible Liquid Phases[J]. Chemistry, ;2021, 84(3): 204-214. shu

Phase Transfer of Environmental Responsive Nanoparticles between Two Immiscible Liquid Phases

  • Corresponding author: Xiaoyan Pei, xiaoyanpei2009@163.com
  • Received Date: 7 August 2020
    Accepted Date: 22 September 2020

Figures(11)

  • Phase-transfer processes of nanoparticles between two immiscible liquid phases play an important role in many aspects such as recycling of catalysts, drug delivery and preparation of nanoparticles. Environmental responsive nanoparticles have been widely developed because of their advantages of nanoparticles and stimuli-responsive properties. The phase transfer of environmental responsive nanoparticles makes the phase transfer process more efficient, reversible and intelligent, which has shown a broad application prospect. In this paper, the recent progress in the phase transfer of environmental responsive nanoparticles between two immiscible phases is reviewed. The main contents include the phase transfer of nanoparticles triggered by stimuli such as pH, CO2, temperature, light, ionic strength, ligand exchange and ionic exchange, and their applications in sustainable catalysis and reaction separation coupling. The key influence of interface effect and self-assembly behavior of nanoparticles and solvation effect on the phase transfer process is analyzed. At the same time, the main problems and further research work in this field are proposed.
  • 加载中
    1. [1]

      Jiang Z, Le N D B, Gupta A, et al. Chem. Soc. Rev., 2015, 44(13): 4264~4274. 

    2. [2]

       

    3. [3]

      Ryu J, Jung N, Lim D, et al. Chem. Commun., 2014, 50(100): 15940~15943. 

    4. [4]

      Teixeira I F, Barbosa E C M, Tsang S C E, et al. Chem. Soc. Rev., 2018, 47(20): 7783~7817. 

    5. [5]

      Cao L, Wang X, Meziani M J, et al. J. Am. Chem. Soc., 2007, 129(37): 11318~11319. 

    6. [6]

      Michalet X, Pinaud F F, Bentolila L A, et al. Science, 2005, 307(5709): 538~544. 

    7. [7]

      Jung K, Song H, Lee G, et al. ACS Nano, 2014, 8(3): 2590~2601. 

    8. [8]

      Ueno K, Oshikiri T, Sun Q, et al. Chem. Rev., 2018, 118(6): 2955~2993. 

    9. [9]

      Yang J, Lee J Y, Ying J Y. Chem. Soc. Rev., 2011, 40(3): 1672~1696. 

    10. [10]

      Gittins D I, Caruso F. Angew. Chem. Int. Ed., 2001, 40(16): 3001~3004. 

    11. [11]

      Jessop P G, Mercer S M, Heldebrant D J. Energy Environ. Sci., 2012, 5(6): 7240~7253. 

    12. [12]

      Cole-Hamilton D J. Science, 2003, 299(5613): 1702~1706. 

    13. [13]

      Russell T P. Science, 2002, 297(5583): 964~967. 

    14. [14]

      Yang J, Sargent E H, Kelley S O, et al. Nat. Mater., 2009, 8(8): 683~689. 

    15. [15]

      Zhou K, Wang Y, Huang X, et al. Angew. Chem. Int. Ed., 2011, 50(27): 6109~6114. 

    16. [16]

       

    17. [17]

      Wang H, Yang H, Liu H, et al. Langmuir, 2013, 29(22): 6687~6696. 

    18. [18]

      Ansar S M, Chakraborty S, Kitchens C L. Nanomaterials, 2018, 8(5): 339~411. 

    19. [19]

      Chakraborty S, Kitchens C L. J. Phys. Chem. C, 2019, 123: 26450~26460. 

    20. [20]

      Imura Y, Morita C, Endo H, et al. Chem. Commun., 2010, 46(48): 9206~9208. 

    21. [21]

      Zhao S, Qiao R, Zhang X L, et al. J. Phys. Chem. C, 2007, 111(22): 7875~7878. 

    22. [22]

      Gui R, Wan A, Jin H, et al. Mater. Lett., 2013, 96: 20~23. 

    23. [23]

      Peng Z, Walther T, Kleinermanns K. J. Phys. Chem. B, 2005, 109(33): 15735~15740. 

    24. [24]

      Xiong D, Cui G, Wang J, et al. Angew. Chem. Int. Ed., 2015, 54(25): 7265~7269. 

    25. [25]

      Pei X, Xiong D, Wang H, et al. Angew. Chem. Int. Ed., 2018, 57(14): 3687~3691. 

    26. [26]

      Xiong R, Chen M, Cui X, et al. ACS Appl. Mater. Interf., 2019, 11(25): 22851~22857. 

    27. [27]

      Pocoví-Martínez S, Francés-Soriano L, Zaballos-García E, et al. RSC Adv., 2013, 3(15): 4867~4871. 

    28. [28]

      Kim H, Lee T S. Mol. Cryst. Liq. Cryst., 2019, 685(1): 78~86. 

    29. [29]

      Li D, Zhao B. Langmuir, 2007, 23(4): 2208~2217. 

    30. [30]

      Horton J M, Bai Z, Jiang X, et al. Langmuir, 2011, 27(5): 2019~2027. 

    31. [31]

      Qin B, Zhao Z, Song R, et al. Angew. Chem. Int. Ed., 2008, 47(51): 9875~9878. 

    32. [32]

      Feng X, Ma H, Huang S, et al. J. Phys. Chem. B, 2006, 110(25): 12311~12317. 

    33. [33]

      Li Z, Yuan X, Feng Y, et al. Phys. Chem. Chem. Phys., 2018, 20(18): 12808~12816. 

    34. [34]

      Li Z, Feng Y, Yuan X, et al. Int. J. Mol. Sci., 2019, 20(7): 1685~1700. 

    35. [35]

      Yuan X, Li Z, Feng Y, et al. J. Mol. Liq., 2019, 277: 805~811. 

    36. [36]

      Li Z, Li R, Yuan X, et al. Green Energy Environ., 2019, 4(2): 131~138. 

    37. [37]

       

    38. [38]

       

    39. [39]

      Peng L, You M, Wu C, et al. ACS Nano, 2014, 8(3): 2555~2561. 

    40. [40]

      Wu Y, Zhang C, Qu X, et al. Langmuir, 2010, 26(12): 9442~9448. 

    41. [41]

      Edwards E W, Chanana M, Wang D, et al. Angew. Chem. Int. Ed., 2008, 47(2): 320~323. 

    42. [42]

      Stocco A, Chanana M, Su G, et al. Angew. Chem. Int. Ed., 2012, 51(38): 9647~9651. 

    43. [43]

      Dorokhin D, Tomczak N, Han M, et al. ACS Nano, 2009, 3(3): 661~667. 

    44. [44]

      Wei Y, Yang J, Ying J Y. Chem. Commun., 2010, 46(18): 3179~3181. 

    45. [45]

      Lala N, Lalbegi S P, Adyanthaya S D, et al. Langmuir, 2001, 17(12): 3766~3768. 

    46. [46]

      Patil V, Malvankar R B, Sastry M. Langmuir, 1999, 15(23): 8197~8206. 

    47. [47]

      Garcia-Martinez J C, Crooks R M. J. Am. Chem. Soc., 2004, 126(49): 16170~16178. 

    48. [48]

      Liu J, Anand M, Roberts C B. Langmuir, 2006, 22(9): 3964~3971. 

    49. [49]

      Yang J, Lee J Y, Deivaraj T C, et al. Langmuir, 2003, 19(24): 10361~10365. 

    50. [50]

      Liu J, Sutton J, Roberts C B. J. Phys. Chem. C, 2007, 111(31): 11566~11576. 

    51. [51]

      Wu N, Fu L, Su M, et al. Nano Lett., 2004, 4(2): 383~386. 

    52. [52]

      Anand M, Bell P W, Fan X, et al. J. Phys. Chem. B, 2006, 110(30): 14693~14701. 

    53. [53]

      Wei G, Yang Z, Lee C, et al. J. Am. Chem. Soc., 2004, 126(16): 5036~5037. 

    54. [54]

      Wang B, Song A, Feng L, et al. ACS Appl. Mater. Inter., 2015, 7(12): 6919~6925. 

    55. [55]

      Sun X, Yin K, Liu B, et al. J. Mater. Chem. C, 2017, 5(20): 4951~4958. 

    56. [56]

      Itoh H, Naka K, Chujo Y. J. Am. Chem. Soc., 2004, 126(10): 3026~3027. 

  • 加载中
    1. [1]

      Zhongrui Wang Yuwen Meng Xu Wang . 双层水凝胶的制备及其pH响应变形实验. University Chemistry, 2025, 40(8): 255-264. doi: 10.12461/PKU.DXHX202410038

    2. [2]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    3. [3]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    4. [4]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    5. [5]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    6. [6]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    7. [7]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    8. [8]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    9. [9]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    10. [10]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    11. [11]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    12. [12]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    13. [13]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    14. [14]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    15. [15]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    16. [16]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    17. [17]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    18. [18]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    19. [19]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    20. [20]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

Metrics
  • PDF Downloads(14)
  • Abstract views(1122)
  • HTML views(294)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return