Citation: Liu Shuang, Liu Lantao. Advances in Carbon Capture and Sequestration of PCPs Synthesized by Amine-Functionalization Ligands[J]. Chemistry, ;2019, 82(2): 108-113. shu

Advances in Carbon Capture and Sequestration of PCPs Synthesized by Amine-Functionalization Ligands

  • Corresponding author: Liu Lantao, liult05@iccas.ac.cn
  • Received Date: 15 August 2018
    Accepted Date: 18 October 2018

Figures(1)

  • In the past decade, porous coordination polymers (PCPs) have attracted significant attention in the area of selective adsorption & separation of small molecules due to their unique crystal structure with the tunable pore size, pore shape and chemical functionalization. Environmental problems are becoming more and more serious. The excellent selective adsorption performance of amine functionalized PCPs on CO2 makes it have good application potential in treatment of carbon dioxide from flue gas. This paper reviews the representative work of PCPs containing terminal amino ligands for CO2 capture and storage, and analyzes the problems and development directions.
  • 加载中
    1. [1]

      Q Wang, J Luo, Z Zhong et al. Energy. Environ. Sci., 2011, 4(1): 42~55. 

    2. [2]

      E S Sanz-Pérez, C R Murdock, S A Didas et al. Chem. Rev., 2016, 116(19): 11840~11876. 

    3. [3]

      P Luis. Desalination, 2016, 380: 93~99. 

    4. [4]

      O Cheung, N Hedin. RSC Adv., 2014, 4(28): 14480~14494. 

    5. [5]

      N Konduru, P Lindner, N M Assaf-Anad. AlChE J. 2007, 53(12): 3137~3143.

    6. [6]

      H Y Zhao, X N Luo, H J Zhang et al. Greenh. Gases, 2018, 8(1): 11~36. 

    7. [7]

    8. [8]

      C Chen, S Zhang, K H Row et al. J. Energy Chem., 2017, 26(5): 868~880. 

    9. [9]

      D S Ahmed, G A El-Hiti, E Yousif et al. J. Polym. Res., 2018, 25(3): 75. 

    10. [10]

      S T Meek, J A Greathouse, M D Allendorf. Adv. Mater., 2011, 23(2): 249~267. 

    11. [11]

      H Furukawa, K E Cordova, M O'Keeffe et al. Science, 2013, 341(6149): 974.

    12. [12]

      D M D'Alessandro, B Smit, J R Long. Angew. Chem. Int. Ed., 2010, 49(35): 6058~6082. 

    13. [13]

      B Li, H Wang, B Chen. Chem. Asian J., 2014, 9(6): 1474~1498. 

    14. [14]

      X Lu, D Jin, S Wei et al. J. Mater. Chem. A, 2015, 3(23): 12118~12132. 

    15. [15]

      Y Belmabkhout, V Guillerm, M Eddaoudi. Chem. Eng. J., 2016, 296: 386~397. 

    16. [16]

      N Stock, S Biswas. Chem. Rev., 2012, 112(2): 933~969. 

    17. [17]

      M Oschatz, M Antonietti. Energy. Environ. Sci., 2018, 11(1): 57~70. 

    18. [18]

      Y Zhao, X Liu, Y Han. RSC Adv., 2015, 5(38): 30310~30330. 

    19. [19]

      J R Li, J M Yu, W G Lu et al. Nat. Commun., 2013, 4: 1538. 

    20. [20]

      Y-S Bae, R Q Snurr. Angew. Chem. Int. Ed., 2011, 50(49): 11586~11596. 

    21. [21]

      C A Trickett, A Helal, B A Al-Maythalony et al. Nat. Rev. Mater., 2017, 2(8): 17045. 

    22. [22]

      D Andirova, C F Cogswell, Y Lei et al. Micropor. Mesopor. Mater., 2016, 219: 276~305. 

    23. [23]

      Y Lin, C Kong, L Chen. RSC Adv., 2016, 6(39): 32598~32614. 

    24. [24]

      J G Vitillo, M Savonnet, G Ricchiardi et al. ChemSusChem., 2011, 4(9): 1281~1290. 

    25. [25]

      K D Vogiatzis, W Klopper, J Friedrich. J. Chem. Theory Comput., 2015, 11(4): 1574~1584. 

    26. [26]

      S Ding, Q Dong, J Hu et al. Chem. Commun., 2016, 52(63): 9757~9760. 

    27. [27]

      S Couck, J F M Denayer, G V Baron et al. J. Am. Chem. Soc., 2009, 131(18): 6326~6327. 

    28. [28]

      B Arstad, H Fjellvag, K O Kongshaug et al. Adsorp. J. Inter. Adsorp. Soc., 2008, 14(6): 755~762. 

    29. [29]

      P Serra-Crespo, E V Ramos-Fernandez, J Gascon et al. Chem. Mater., 2011, 23(10): 2565~2572. 

    30. [30]

      Y Fu, D Sun, Y Chen et al. Angew. Chem. Int. Ed., 2012, 51(14): 3364~3367. 

    31. [31]

      X Si, C Jiao, F Li et al. Energy. Environ. Sci., 2011, 4(11): 4522~4527. 

    32. [32]

      E Papazoi, A Douvali, S Rapti et al. Inorg. Chem. Front., 2017, 4(3): 530~536. 

    33. [33]

      G E Cmarik, M Kim, S M Cohen et al. Langmuir, 2012, 28(44): 15606~15613. 

    34. [34]

      K Peikert, F Hoffmann, M Froeba. Chem. Commun., 2012, 48(91): 11196~11198. 

    35. [35]

      D De, T K Pal, S Neogi et al. Chem. Eur. J., 2016, 22(10): 3387~3396. 

    36. [36]

      H He, F Sun, B Aguila et al. J. Mater. Chem. A, 2016, 4(39): 15240~15246. 

    37. [37]

      J P Zhang, A X Zhu, R B Lin et al. Adv. Mater., 2011, 23(10): 1268~1271. 

    38. [38]

      R B Lin, D Chen, Y Y Lin et al. Inorg. Chem., 2012, 51(18): 9950~9955. 

    39. [39]

      T M McDonald, W R Lee, J A Mason et al. J. Am. Chem. Soc., 2012, 134(16): 7056~7065. 

    40. [40]

      T M McDonald, J A Mason, X Q Kong et al. Nature, 2015, 519(7543): 303~308. 

    41. [41]

      O M Yaghi, M O'Keeffe, N W Ockwig et al. Nature, 2003, 423(6941): 705~714. 

    42. [42]

      G Ortiz, S Brandes, Y Rousselin et al. Chem. Eur. J., 2011, 17(24): 6689~6695. 

    43. [43]

      H Feuchter, G Ortiz, Y Rousselin et al. Cryst. Growth Design, 2017, 17(7): 3665~3676. 

    44. [44]

      A Das, D M D'Alessandro. Cryst. Eng. Commun., 2015, 17(4): 706~718. 

    45. [45]

      Y Lin, C Kong, L Chen. RSC Adv., 2016, 6(39): 32598~32614. 

    46. [46]

      T Ahnfeldt, N Guillou, D Gunzelmann et al. Angew. Chem. Int. Ed., 2009, 48(28): 5163~5166. 

    47. [47]

      J H Cavka, S Jakobsen, U Olsbye et al. J. Am. Chem. Soc., 2008, 130(42): 13850~13851. 

    48. [48]

      S Parshamoni, S Sanda, H S Jena et al. Chem. Asian J., 2015, 10(3): 653~660. 

    49. [49]

      R Haldar, S K Reddy, V M Suresh et al. Chem. Eur. J., 2014, 20(15): 4347~4356. 

    50. [50]

      S S Y Chui, S M F Lo, J P H Charmant et al. Science, 1999, 283(5405): 1148~1150. 

    51. [51]

      K P Gomora-Figueroa, J A Mason, M I Gonzalez et al. Inorg. Chem. 2017, 56(8): 4308~4316.

    52. [52]

      K S Park, Z Ni, A P Cote et al. PNAS, 2006, 103(27): 10186~10191. 

    53. [53]

      X C Huang, Y Y Lin, J P Zhang et al. Angew. Chem., 2006, 118(10): 1587~1589. 

    54. [54]

      T Islamoglu, S Goswami, Z Li et al. Acc. Chem. Res., 2017, 50(4): 805~813. 

    55. [55]

      A Schneemann, V Bon, I Schwedler et al. Chem. Soc. Rev., 2014, 43(16): 6062~6096. 

    56. [56]

      S Krause, V Bon, I Senkovska et al. Nature, 2016, 532(7599): 348~352. 

  • 加载中
    1. [1]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    2. [2]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    3. [3]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    4. [4]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    5. [5]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    6. [6]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    7. [7]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    8. [8]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    9. [9]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    10. [10]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    11. [11]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    12. [12]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    13. [13]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    15. [15]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    16. [16]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    17. [17]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    18. [18]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    19. [19]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    20. [20]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

Metrics
  • PDF Downloads(5)
  • Abstract views(404)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return