Citation: Junjun Wang, Xianming Wang, Lianfeng Wu, Liang Ning, Bo Wang, Shougang Chen. Anti-Icing/Icephobic Mechanism and Preparation of Superhydrophobic Coatings[J]. Chemistry, ;2021, 84(6): 515-523. shu

Anti-Icing/Icephobic Mechanism and Preparation of Superhydrophobic Coatings

  • Corresponding author: Junjun Wang, wjj2010012100@126.com
  • Received Date: 1 December 2020
    Accepted Date: 18 January 2021

Figures(10)

  • Severe ice accretion on the surface of facilities will lead to major inconvenience for our daily life and even cause huge economic losses. Superhydrophobic coatings possess a large water contact angle and small sliding angle, thus exhibit a good application prospect in the anti-icing field. In this paper, the anti-icing/icephobic mechanism of superhydrophobic coatings investigated in literatures is summarized, and the research progress in two typical superhydrophobic anti-icing coatings, polymer-filler composites and materials with special surface structure, is briefly reviewed. Besides, the limits of the current researches and the future development directions of superhydrophobic anti-icing coatings are also pointed out in this paper.
  • 加载中
    1. [1]

    2. [2]

       

    3. [3]

      Brassard J D, Laforte C, Guerin F, et al. Advances in Polymer Science. Springer, Berlin, Heidelberg, 2017, 1~21.

    4. [4]

      Chee W T. US: 10457404, 2019.

    5. [5]

       

    6. [6]

    7. [7]

       

    8. [8]

      Zhao Z H, Chen H W, Liu X L, et al. Surf. Coat. Tech., 2018, 349: 340~346. 

    9. [9]

      Chernyy S, Jarn M, Shimizu K, et al. ACS Appl. Mater. Interf, . 2014, 6(9): 6487~6496.

    10. [10]

       

    11. [11]

    12. [12]

      Wilson P W, Lu W, Xu H, et al. Phys. Chem. Chem. Phys., 2013, 15(2): 581~585. 

    13. [13]

      Michael N. Nature, 2011, 477(7365): 412~413. 

    14. [14]

      Bohn H F, Federle W. PNAS, 2004, 101(39): 14138~14143. 

    15. [15]

      Liu Y, Ma L Q, Wang W, et al. Appl. Surf. Sci., 2018, 447: 599~609. 

    16. [16]

      Tang G, Yeong Y H, Khudiakov M. Advances in Polymer Science. Springer, Berlin, Heidelberg, 2017, 1~17.

    17. [17]

      Fortin G, Adomou M, Perron J. SAE Technical Paper, 2011-38-0003.

    18. [18]

      Boinovich L B, Emelyanenko A M. Mendeleev Commun., 2013, 1(23): 3~10.

    19. [19]

      Puretskiy N, Chanda J, Stoychev G, et al. Adv. Mater. Interf., 2015, 2(11): 1500124. 

    20. [20]

      Cheng T T, He R, Zhang Q H, et al. J. Mater. Chem. A, 2015, 3(43): 21637~21646. 

    21. [21]

      Wong T S, Kang S H, Tang S K, et al. Nature, 2011, 477(7365): 443~447. 

    22. [22]

      Kim P, Wong T S, Alvarenga J, et al. ACS Nano, 2012, 6(8): 6569~6577. 

    23. [23]

      Rykaczewski K, Anand S, Subramanyam S B, et al. Langmuir, 2013, 29(17): 5230~5238. 

    24. [24]

      Vogel N, Belisle R A, Hatton B, et al. Nat. Commun., 2013, 4(1): 2176. 

    25. [25]

      Smith J D, Dhiman R, Anand S, et al. Soft Matter, 2013, 9(6): 1772~1780. 

    26. [26]

      Chen J, Dou R M, Cui D P, et al. ACS Appl. Mater. Interf., 2013, 5(10): 4026~4030. 

    27. [27]

      Dou R M, Chen J, Zhang Y F, et al. ACS Appl. Mater. Interf., 2014, 6(10): 6998~7003. 

    28. [28]

      Koop T, Luo B P, Tsias A, et al. Nature, 2000, 406(6796): 611~614. 

    29. [29]

      Rosenberg R. Phys. Today, 2005, 58(12): 50. 

    30. [30]

      Ikeda-Fukazawa T, Kawamura K. J. Chem. Phys., 2004, 120(3): 1395~1401. 

    31. [31]

       

    32. [32]

       

    33. [33]

       

    34. [34]

       

    35. [35]

       

    36. [36]

       

    37. [37]

       

    38. [38]

      Zhan X L, Yan Y D, Zhang Q H, et al. J. Mater. Chem. A, 2014, 2(24): 9390~9399. 

    39. [39]

      Xiao J, Chaudhuri S. Langmuir, 2012, 28(9): 4434~4446. 

    40. [40]

      Cao L L, Jones A K, Sikka V K, et al. Langmuir, 2009, 25(21): 12444~12448. 

    41. [41]

      Wang H, He G G, Tian Q Q. Appl. Surf. Sci., 2012, 258(18): 7219~7224. 

    42. [42]

      Shen Y Z, Wang G Y, Tao J, et al. Adv. Mater. Interf., 2017, 4(22): 1700836. 

    43. [43]

      Wang Z J, Kwon D J, DeVries K L, et al. Exp. Therm. Fluid Sci., 2015, 60: 132~137. 

    44. [44]

      Bharathidasan T, Kumar S V, Bobji M S, et al. Appl. Surf. Sci., 2014, 314: 241~250. 

    45. [45]

      Antonini C, Carmona F J, Pierce E, et al. Langmuir, 2009, 25(11): 6143~6154. 

    46. [46]

      Milne A J B, Amirfazli A. Langmuir, 2009, 25(24): 14155~14164. 

    47. [47]

      Pierce E, Carmona F J, Amirfazli A. Colloid Surf. A, 2008, 323(1/3): 73~82.

    48. [48]

      Ha J W, Park I J, Lee S B. Macromolecules, 2005, 38(3): 736~744. 

    49. [49]

      Bertolucci M, Galli G, Chiellini E. Macromolecules, 2004, 37(10): 3666~3672. 

    50. [50]

      Wang Y Y, Xue J, Wang Q J, et al. ACS Appl. Mater. Interf., 2013, 5(8): 3370~3381. 

    51. [51]

      Lv J Y, Song Y L, Jiang L, et al. ACS Nano, 2014, 8(4): 3152~3169. 

    52. [52]

      Reyssat M, Pépin A, Marty F, et al. EPL-Europhys Lett., 2006, 74(2): 306. 

    53. [53]

      Bartolo D, Bouamrirene F, Verneuil E, et al. EPL-Europhys Lett., 2006, 74(2): 299. 

    54. [54]

      Deng T, Varanasi K K, Hsu M, et al. Appl. Phys. Lett., 2009, 94(13): 133109. 

    55. [55]

      Richard D, Clanet C, Quéré D. Nature, 2002, 417(6891): 811~811.

    56. [56]

      Meuler A J, McKinley G H, Cohen R E. ACS Nano, 2010, 4(12): 7048~7052. 

    57. [57]

      Kulinich S A, Farzaneh M. Cold Reg. Sci. Technol., 2011, 65(1): 60~64. 

    58. [58]

      Beeram P, Waldman R, Hu H. 9th AIAA Atmospheric and Space Environments Conference. Denver, Colorado, 2017. 1~15.

    59. [59]

      Zhang Z C, Ma L Q, Liu Y, et al. 2018 Atmospheric and Space Environments Conference. Atlanta, Georgia, 2018. 3655.

    60. [60]

      Kimura S, Yamagishi Y, Sakabe A, et al. SAE Technical Paper, 2007-01-3315.

    61. [61]

       

    62. [62]

      Wang L, Gong Q H, Zhan S H, et al. Adv. Mater., 2016, 28(35): 7729~7735. 

    63. [63]

      Farhadi S, Farzaneh M, Kulinich S A. Appl. Surf. Sci., 2011, 257(14): 6264~6269. 

    64. [64]

      Nguyen T B, Park S, Lim H. Appl. Surf. Sci., 2018, 435: 585~591. 

    65. [65]

      Bahadur V, Garimella S V. Langmuir, 2009, 25(8): 4815~4820. 

    66. [66]

      Mishchenko L, Hatton B, Bahadur V, et al. ACS Nano, 2010, 4(12): 7699~7707. 

    67. [67]

      Krupenkin T N, Taylor J A, Wang E N, et al. Langmuir, 2007, 23(18): 9128~9133. 

    68. [68]

      Shen Y Z, Wang G Y, Zhu C L, et al. Surf. Coat. Tech., 2017, 319: 286~293. 

    69. [69]

      Jung Y C, Bhushan B. Langmuir, 2008, 24(12): 6262~6269. 

    70. [70]

      Wang Y Y, Li M Z, Lv T, et al. J. Mater. Chem. A, 2015, 3: 4967~4975. 

    71. [71]

      Jafari R, Menini R, Farzaneh M. Appl. Surf. Sci., 2010, 257(5): 1540~1543. 

  • 加载中
    1. [1]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    2. [2]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    3. [3]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    4. [4]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    7. [7]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    8. [8]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    9. [9]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    10. [10]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    11. [11]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    12. [12]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    13. [13]

      Chi Zhang Yi Xu Xiaopeng Guo Zian Jie Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, 2025, 40(6): 266-275. doi: 10.12461/PKU.DXHX202407061

    14. [14]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    15. [15]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    16. [16]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    17. [17]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    18. [18]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    19. [19]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    20. [20]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

Metrics
  • PDF Downloads(168)
  • Abstract views(6475)
  • HTML views(1730)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return