Effect of rare-earth element modification on the performance of Cu/ZnAl catalysts derived from hydrotalcite precursor in methanol steam reforming
- Corresponding author: ZHANG Lei, lnpuzhanglei@163.com YANG Zhan-xu, zhanxuy@126.com
Citation:
YANG Shu-qian, HE Jian-ping, ZHANG Na, SUI Xiao-wei, ZHANG Lei, YANG Zhan-xu. Effect of rare-earth element modification on the performance of Cu/ZnAl catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. Journal of Fuel Chemistry and Technology,
;2018, 46(2): 179-188.
JACOBSON M Z, COLELLA W G, GOLDEN D. Cleaning the air and improving health with hydrogen fuel-cell vehicles[J]. Science, 2005,308(5730):1901-1905. doi: 10.1126/science.1109157
FIHRI A, ARTERO V, RAZAVET M, BAFFERT C, LEIBL W, FONTECAVE M. Cobaloxime-based photocatalytic devices for hydrogen production[J]. Angew Chem Int Ed, 2008,47(3):564-567.
KUC J, NEUMANN M, ARMBRUSTER M, YOON S, ZHANG Y, ERNI R, WEIDENKAFF A, MATAM S K. Methanol steam reforming catalysts derived by reduction of perovskite-type oxides LaCo1-x-yPdx ZnyO3±δ[J]. Catal Sci Technol, 2016,6:1455-1468. doi: 10.1039/C5CY01410G
MA Y, GUAN G, PHANTHONG P, LI X, CAO J, HAO X, WANG Z, ABUDULA A. Steam reforming of methanol for hydrogen production over nanostructured wire-like molybdenum carbide catalyst[J]. Int J Hydrogen Energy, 2014,39(33):18803-18811. doi: 10.1016/j.ijhydene.2014.09.062
SA S, SILVA H, BRANDAO L, SOUSA J M, MENDES A. Catalysts for methanol steam reforming-A review[J]. Appl Catal B:Environ, 2010,99(1/2):43-57.
ZHANG Lei, PAN Li-wei, NI Chang-jun, ZHAO Sheng-sheng, WANG Shu-dong, HU Yong-kang, WANG An-jie, JIANG Kai. Optimization of methanol steam reforming for hydrogen[J]. J Fuel Chem Technol, 2013,41(1):116-122.
KIM W, MOHAIDEEN K K, SEO D J, YOON L Y. Methanol-steam reforming reaction over Cu-Al-based catalysts derived from layered double hydroxides[J]. Int J Hydrogen Energy, 2017,42(4):2081-2087. doi: 10.1016/j.ijhydene.2016.11.014
ZHOU J J, ZHANG Y, WU G S, MAO D S, LU G Z. Influence of the component interaction over Cu/ZrO2 catalysts induced with fractionated precipitation method on the catalytic performance for methanol steam reforming[J]. RSC Adv, 2016,6:30176-30183. doi: 10.1039/C5RA24163D
DAS D, LLORCA J, DOMINGUEZ M, COLUSSI S, TROVARELLI A, GAYEN A. Methanol steam reforming behavior of copper impregnated over CeO2-ZrO2 derived from a surfactant assisted coprecipitation route[J]. Int J Hydrogen Energy, 2015,40(33):10463-10479. doi: 10.1016/j.ijhydene.2015.06.130
LYTKINA A A, ZHILYAEVA N A, ERMILOVA M M, OREKHOVA N V, YAROSLAVTSEO A B. Influence of the support structure and composition of Ni-Cu-based catalysts on hydrogen production by methanol steam reforming[J]. Int J Hydrogen Energy, 2015,40(31):9677-9684. doi: 10.1016/j.ijhydene.2015.05.094
HUANG Y H, WANG S F, TSAI A P, KAMEOKA S. Catalysts prepared from copper-nickel ferrites for the steam reforming of methanol[J]. J Power Sources, 2015,281:138-145.
BUSCA G, COSTANTINO U, MARMOTTINI F, MONTANARI T, PATRONO P, PINZARI F, RAMIS G. Methanol steam reforming over ex-hydrotalcite Cu-Zn-Al catalysts[J]. Appl Catal A:Gen, 2006,310:70-78. doi: 10.1016/j.apcata.2006.05.028
YAO C Z, WANG L C, LIU Y M, WU G S, CAO Y, DAI W L, FAN K N. Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts[J]. Appl Catal A:Gen, 2006,297(2):151-158. doi: 10.1016/j.apcata.2005.09.002
PATEL S, PANT K K. Influence of preparation method on performance of Cu(Zn)(Zr) -alumina catalysts for the hydrogen production via steam reforming of methanol[J]. Porous Mater, 2006,13(3):373-378.
SHEN J P, SONG C S. Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells[J]. Catal Today, 2002,77(1):89-98.
HAMMOUD D, GENNEQUIN C, ABOUKAIS A, AAD E A. Steam reforming of methanol over x% Cu/Zn-Al 400500 based catalysts for production of hydrogen:Preparation by adopting memory effect of hydrotalcite and behavior evaluation[J]. Int J Hydrogen Energy, 2015,40(2):1283-1297. doi: 10.1016/j.ijhydene.2014.09.080
CAI Y C, LIU S W, XU X L, LI S B. team reforming of methanol over CuO-ZnO-La2O3-Al2O3 catalyst[J]. Mol Catal, 2002,2(15):152-154.
PATEL S, PANT K K. Activity and stability enhancement of copper-alumina catalysts using cerium and zinc promoters for the selective production of hydrogen via steam reforming of methanol[J]. J Power Sources, 2006,159(1):139-143. doi: 10.1016/j.jpowsour.2006.04.008
TROVARELLI A. Catalytic properties of ceria and CeO2-containing materials[J]. Catal Rev Sci Eng, 1996,38(4):439-520. doi: 10.1080/01614949608006464
HE J P, YANG Z X, ZHANG L, LI Y, PAN L W. Cu supported on ZnAl-LDHs precursor prepared by in-situ synthesis method on γ-Al2O3 as catalytic material with high catalytic activity for methanol steam reforming[J]. Int J Hydrogen Energy, 2017,42(15):9930-9937. doi: 10.1016/j.ijhydene.2017.01.229
XIE R F, FAN G L, YANG L, LI F. Solvent-free oxidation of ethylbenzene over hierarchical flower-like core-shell structured Co-based mixed metal oxides with significantly enhanced catalytic performance[J]. Catal Sci Technol, 2015,5(1):540-548.
AGARWAL V, PATEL S, PANT K K. H2 production by steam reforming of methanol over Cu/ZnO/Al2O3 catalysts:Transient deactivation kinetics modeling[J]. Appl Catal A:Gen, 2005,279(1):155-164.
ZHANG L, PAN L W, NI C J, SUN T J, ZHAO S S, WANG S D, WANG A J, HU Y K. CeO2-ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2013,38(11):4397-4406. doi: 10.1016/j.ijhydene.2013.01.053
ZHANG L, PAN L W, NI C J, SUN T J, WANG S D, WANG A J, HU Y K, ZHAO S S. Effect of precipitation aging time on the performance of CuO/ZnO/CeO2-ZrO2 for methanol steam reforming[J]. J Fuel Chem Technol, 2013,41(7):883-888. doi: 10.1016/S1872-5813(13)60038-9
HURST N W, GENTRY S J, JONES A, MCNICOL B D. Temperature programmed reduction[J]. Catal Rev Sci Eng, 1982,24(2):233-309. doi: 10.1080/03602458208079654
SHIM J O, NA H S, JHA A, JANG W J, JEONG D W, NAH I W, JEON B H, ROH H S. Effect of preparation method on the oxygen vacancy concentration of CeO2-promoted Cu/γ-Al2O3 catalysts for HTS reactions[J]. Chem Eng J, 2016,306:908-915. doi: 10.1016/j.cej.2016.08.030
WANG C, CHENG Q P, WANG X L, MA K, BAI X Q, TAN S R, TIAN Y, TONG D, ZHENG L R, ZHANG J, LI X G. Enhanced catalytic performance for CO preferential oxidation over CuO catalysts supported on highly defective CeO2 nanocrystals[J]. Appl Surf Sci, 2017,422:932-943. doi: 10.1016/j.apsusc.2017.06.017
ZHANG Lei, LEI Jun-teng, TIAN Yuan, HU Xin, BAI Jin, LIU Dan, YANG Yi, PAN Li-wei. Effect of precursor and precipitant concentration on the performance of CuO/ZnO/CeO2-ZrO2 catalyst for methanol steam reforming[J]. J Fuel Chem Technol, 2015,43(11):1366-1374. doi: 10.3969/j.issn.0253-2409.2015.11.012
DAS D, LLORCA J, DOMINGUEZ M, COLUSSI S, TROVARELLI A, GAYEN A. Methanol steam reforming behavior of copper impregnated over CeO2-ZrO2 derived from a surfactant assisted coprecipitation route[J]. Int J Hydrogen Energy, 2015,40(33):10463-10479.
ZHANG Guo-qiang, GUO Tian-yu, ZHENG Hua-yan, LI Zhong. Effect of calcination temperature on catalytic performance of CuCe/Ac catalysts for oxidative carbonylation of methanol[J]. J Fuel Chem Technol, 2016,44(6):674-679.
XIAO S, ZHANG Y F, GAO P, ZHONG L S, LI X P, ZHANG Z Z, WANG H, WEI W, SUN Y H. Highly efficient cu-based catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. Catal Today, 2017,281:327-336. doi: 10.1016/j.cattod.2016.02.004
LIU L J, YAO Z J, DENG Y, GAO F, LIU B, DONG L. Nanoscale ceria on the activity of CuO/CeO2 for NO reduction by CO[J]. ChemCatChem, 2011,3(6):978-989.
LIANG F L, YU Y, ZHOU W, XU X Y, ZHU Z H. Highly defective CeO2 as a promoter for efficient and stable water oxidation[J]. J Mater Chem A, 2015,3(2):634-640. doi: 10.1039/C4TA05770H
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
Jinghan ZHANG , Guanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Liang TANG , Jingfei NI , Kang XIAO , Xiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139
Changqing MIAO , Fengjiao CHEN , Wenyu LI , Shujie WEI , Yuqing YAO , Keyi WANG , Ni WANG , Xiaoyan XIN , Ming FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Yuena Yang , Xufang Hu , Yushan Liu , Yaya Kuang , Jian Ling , Qiue Cao , Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125
Yongpo Zhang , Xinfeng Li , Yafei Song , Mengyao Sun , Congcong Yin , Chunyan Gao , Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
a: γ-Al2O3; b: ZnAl-LDHs/γ-Al2O3
a: Cu/ZnAl; b: Y/Cu/ZnAl; c: La/Cu/ZnAl; d: Ce/Cu/ZnAl; e: Sm/Cu/ZnAl; f: Gd/Cu/ZnAl
(a): Y/Cu/ZnAl; (b): La/Cu/ZnAl; (c): Ce/Cu/ZnAl; (d): Sm/Cu/ZnAl; (e): Gd/Cu/ZnAl
a: Cu/ZnAl; b: Y/Cu/ZnAl; c: La/Cu/ZnAl; d: Ce/Cu/ZnAl; e: Sm/Cu/ZnAl; f: Gd/Cu/ZnAl
a: Cu/ZnAl; b: Y/Cu/ZnAl; c: La/Cu/ZnAl; d: Ce/Cu/ZnAl; e: Sm/Cu/ZnAl; f: Gd/Cu/ZnAl
a: Cu/ZnAl; b: Y/Cu/ZnAl; c: La/Cu/ZnAl; d: Ce/Cu/ZnAl; e: Sm/Cu/ZnAl; f: Gd/Cu/ZnAl
a: Cu/ZnAl; b: Y/Cu/ZnAl; c: La/Cu/ZnAl; d: Ce/Cu/ZnAl; e: Sm/Cu/ZnAl; f: Gd/Cu/ZnAl
a: Cu/ZnAl; b: Y/Cu/ZnAl; c: La/Cu/ZnAl; d: Ce/Cu/ZnAl; e: Sm/Cu/ZnAl; f: Gd/Cu/ZnAl
a: Cu/ZnAl; b: Y/Cu/ZnAl; c: La/Cu/ZnAl; d: Ce/Cu/ZnAl; e: Sm/Cu/ZnAl; f: Gd/Cu/ZnAl
a: Cu/ZnAl; b: Y/Cu/ZnAl; c: La/Cu/ZnAl; d: Ce/Cu/ZnAl; e: Sm/Cu/ZnAl; f: Gd/Cu/ZnAl; g: equil
a: Cu/ZnAl; b: Y/Cu/ZnAl; c: La/Cu/ZnAl; d: Ce/Cu/ZnAl; e: Sm/Cu/ZnAl; f: Gd/Cu/ZnAl; g: equil