Citation: Tang Yuping, He Yanmei, Fan Qinghua. Artificial Stimuli-Responsive Catalytic Systems for Switchable Asymmetric Catalysis[J]. Chinese Journal of Organic Chemistry, ;2020, 40(11): 3672-3685. doi: 10.6023/cjoc202006076 shu

Artificial Stimuli-Responsive Catalytic Systems for Switchable Asymmetric Catalysis

  • Corresponding author: He Yanmei, heym@iccas.ac.cn Fan Qinghua, fanqh@iccas.ac.cn
  • Received Date: 30 June 2020
    Revised Date: 3 August 2020
    Available Online: 11 August 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21772204, 21521002), and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (No. QYZDJ-SSW-SLH023)the National Natural Science Foundation of China 21772204the Key Research Program of Frontier Sciences, Chinese Academy of Sciences QYZDJ-SSW-SLH023the National Natural Science Foundation of China 21521002

Figures(17)

  • Inspired by enzyme allosteric catalysis, the study on artificial stimuli-responsive asymmetric catalytic systems has attracted more and more attentions in recent years. In order to precisely control the catalytic activity and stereoselectivity, stimuli-responsive functionalities have been introduced into the catalyst design. A variety of asymmetric reactions featuring on/off-switchable catalysis and/or stereodivergent catalysis have been successfully achieved by using light-, coordination-, pH-and redox-driven chiral switchable catalysts. By selecting representative examples, the catalyst design principles, allosteric mechanism and their applications in switchable asymmetric reactions sre mainly introduced. At the same time, advantages and limitations of this emerging field are summarized, and perspectives for its future development are given.
  • 加载中
    1. [1]

      (a) Traut, T. Enzyme Activity: Allosteric Regulation, John Wiley & Sons Ltd, Chichester, 2014.
      (b) Traut, T. Allosteric Regulatory Enzymes, Springer, New York, 2008.

    2. [2]

      van Leeuwen, P. W. N. M. Homogeneous Catalysis: Understanding the Art, Springer, Dordrecht, 2004.

    3. [3]

      van Leeuwen, P. W. N. M. Supramolecular Catalysis, Wiley-VCH, Weinheim, 2008.

    4. [4]

    5. [5]

      (a) Lüning, U. Angew. Chem., Int. Ed. 2012, 51, 8163.
      (b) Blanco, V.; Leigh, D. A.; Marcos, V. Chem. Soc. Rev. 2015, 44, 5341.
      (c) Vlatković, M.; Collins, B. S. L.; Feringa, B. L. Chem.-Eur. J. 2016, 22, 17080.
      (d) van Dijk, L.; Tilby, M. J.; Szpera, R.; Smith, O. A.; Bunce, H. A. P.; Fletcher, S. P. Nat. Rev. Chem. 2018, 2, 0117.

    6. [6]

      (a) Cao, W.; Feng, X.; Liu, X. Org. Biomol. Chem. 2019, 17, 6538.
      (b) Ding, Z.-Y.; Chen, F.; Qin, J.; He, Y.-M.; Fan, Q.-H. Angew. Chem., Int. Ed. 2012, 51, 5706.

    7. [7]

      Kasprzyk-Hordern, B. Chem. Soc. Rev. 2010, 39, 4466.  doi: 10.1039/c000408c

    8. [8]

      Romanazzi, G.; Degennaro, L.; Mastrorilli, P.; Luisi, R. ACS Catal. 2017, 7, 4100.  doi: 10.1021/acscatal.7b00827

    9. [9]

      (a) Yamamoto, T.; Yamada, T.; Nagata, Y.; Suginome, M. J. Am. Chem. Soc. 2010, 132, 7899.
      (b) Akai, Y.; Yamamoto, T.; Nagata, Y.; Ohmura, T.; Suginome, M. J. Am. Chem. Soc. 2012, 134, 11092.
      (c) Nagata, Y.; Nishikawa, T.; Suginome, M. J. Am. Chem. Soc. 2014, 136, 15901.
      (d) Akai, Y.; Konnert, L.; Yamamoto, T.; Suginome, M. Chem. Commun. 2015, 51, 7211.
      (e) Ke, Y.-Z.; Nagata, Y.; Yamada, T.; Suginome, M. Angew. Chem., Int. Ed. 2015, 54, 9333.

    10. [10]

      Stoll, R. S.; Hecht, S. Angew. Chem., Int. Ed. 2010, 49, 5054.  doi: 10.1002/anie.201000146

    11. [11]

      Irie, M. Chem. Rev. 2000, 100, 1685.  doi: 10.1021/cr980069d

    12. [12]

      Sud, D.; Norsten, T. B.; Branda, N. R. Angew. Chem., Int. Ed. 2005, 44, 2019.  doi: 10.1002/anie.200462538

    13. [13]

      (a) Koumura, N.; Zijlstra, R. W. J.; van Delden, R. A.; Harada, N.; Feringa, B. L. Nature 1999, 401, 152.
      (b) Eelkema, R.; Pollard, M. M.; Vicario, J.; Katsonis, N.; Ramon, B. S.; Bastiaansen, C. W. M.; Broer, D. J.; Feringa, B. L. Nature 2006, 440, 163.

    14. [14]

      Dorel, R.; Feringa, B. L. Chem. Commun. 2019, 55, 6477.  doi: 10.1039/C9CC01891C

    15. [15]

      Wang, J.; Feringa, B. L. Science 2011, 331, 1429.  doi: 10.1126/science.1199844

    16. [16]

      Vlatković, M.; Bernardi, L.; Otten, E.; Feringa, B. L. Chem. Commun. 2014, 50, 7773.  doi: 10.1039/c4cc00794h

    17. [17]

      Trost, B. M.; Van Vranken, D. L.; Bingel, C. J. Am. Chem. Soc. 1992, 114, 9327.  doi: 10.1021/ja00050a013

    18. [18]

      Zhao, D.; Neubauer, T. M.; Feringa, B. L. Nat. Commun. 2015, 6, 6652.  doi: 10.1038/ncomms7652

    19. [19]

      (a) Juwarker, H.; Lenhardt, J. M.; Pham, D. M.; Craig, S. L. Angew. Chem., Int. Ed. 2008, 47, 3740.
      (b) Juwarker, H.; Jeong, K.-S. Chem. Soc. Rev. 2010, 39, 3664.

    20. [20]

      Dorel, R.; Feringa, B. L. Angew. Chem., Int. Ed. 2020, 59, 785.  doi: 10.1002/anie.201913054

    21. [21]

      (a) Koumura, N.; Geertsema, E. M.; van Gelder, M. B.; Meetsma, A.; Feringa, B. L. J. Am. Chem. Soc. 2002, 124, 5037.
      (b) Vicario, J.; Walko, M.; Meetsma, A.; Feringa, B. L. J. Am. Chem. Soc. 2006, 128, 5127.
      (c) Klok, M.; Walko, M.; Geertsema, E. M.; Ruangsupapichat, N.; Kistemaker, J. C. M.; Meetsma, A.; Feringa, B. L. Chem.-Eur. J. 2008, 14, 11183.

    22. [22]

      Pizzolato, S. F.; Collins, B. S. L.; van Leeuwen, T.; Feringa, B. L. Chem.-Eur. J. 2017, 23, 6174.  doi: 10.1002/chem.201604966

    23. [23]

      Pizzolato, S. F.; Štacko, P.; Kistemaker, J. C. M.; van Leeuwen, T.; Otten, E.; Feringa, B. L. J. Am. Chem. Soc. 2018, 140, 17278.  doi: 10.1021/jacs.8b10816

    24. [24]

      Pizzolato, S. F.; Štacko, P.; Kistemaker, J. C. M.; van Leeuwen, T.; Feringa, B. L. Nat. Catal. 2020, 3, 488.  doi: 10.1038/s41929-020-0452-y

    25. [25]

      (a) Chen, C.-T.; Chou, Y.-C. J. Am. Chem. Soc. 2000, 122, 7662.
      (b) Chen, W.-C.; Lee, Y.-W.; Chen, C.-T. Org. Lett. 2010, 12, 1472.
      (c) Chen, C.-T.; Chen, C.-H.; Ong, T.-G. J. Am. Chem. Soc. 2013, 135, 5294.

    26. [26]

      Chen, C.-T.; Tsai, C.-C.; Tsou, P.-K.; Huang, G.-T.; Yu, C.-H. Chem. Sci. 2017, 8, 524.  doi: 10.1039/C6SC02646J

    27. [27]

      (a) Holliday, B. J.; Mirkin, C. A. Angew. Chem., Int. Ed. 2001, 40, 2022.
      (b) Caulder, D. L.; Raymond, K. N. Acc. Chem. Res. 1999, 32, 975.

    28. [28]

      Oliveri, C. G.; Ulmann, P. A.; Wiester, M. J.; Mirkin, C. A. Acc. Chem. Res. 2008, 41, 1618.  doi: 10.1021/ar800025w

    29. [29]

      Wiester, M. J.; Ulmann, P. A.; Mirkin, C. A. Angew. Chem., Int. Ed. 2011, 50, 114.  doi: 10.1002/anie.201000380

    30. [30]

      Gianneschi, N. C.; Masar Ⅲ, M. S.; Mirkin, C. A. Acc. Chem. Res. 2005, 38, 825.  doi: 10.1021/ar980101q

    31. [31]

      Yoon, H. J.; Kuwabara, J.; Kim, J.-H.; Mirkin, C. A. Science 2010, 330, 66.  doi: 10.1126/science.1193928

    32. [32]

      Gianneschi, N. C.; Bertin, P. A.; Nguyen, S. T.; Mirkin, C. A.; Zakharov, L. N.; Rheingold, A. L. J. Am. Chem. Soc. 2003, 125, 10508.  doi: 10.1021/ja035621h

    33. [33]

      Hansen, K. B.; Leighton, J. L.; Jacobsen, E. N. J. Am. Chem. Soc. 1996, 118, 10924.  doi: 10.1021/ja962600x

    34. [34]

      Gianneschi, N. C.; Cho, S.-H.; Nguyen, S. T.; Mirkin, C. A. Angew. Chem., Int. Ed. 2004, 43, 5503.  doi: 10.1002/anie.200460932

    35. [35]

      Ouyang, G.-H.; He, Y.-M.; Li, Y.; Xiang, J.-F.; Fan, Q.-H. Angew. Chem., Int. Ed. 2015, 54, 4334.  doi: 10.1002/anie.201411593

    36. [36]

      (a) Coskun, A.; Banaszak, M.; Astumian, R. D.; Stoddart, J. F.; Grzybowski, B. A. Chem. Soc. Rev. 2012, 41, 19.
      (b) Zhang, L.; Marcos, V.; Leigh, D. A. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 9397.

    37. [37]

      Leigh, D. A.; Marcos, V.; Wilson, M. R. ACS Catal. 2014, 4, 4490.  doi: 10.1021/cs5013415

    38. [38]

      Blanco, V.; Carlone, A.; Hänni, K. D.; Leigh, D. A.; Lewandowski, B. Angew. Chem., Int. Ed. 2012, 51, 5166.  doi: 10.1002/anie.201201364

    39. [39]

      Blanco, V.; Leigh, D. A.; Marcos, V.; Morales-Serna, J. A.; Nussbaumer, A. L. J. Am. Chem. Soc. 2014, 136, 4905.  doi: 10.1021/ja501561c

    40. [40]

      (a) Alvarez-Pérez, M.; Goldup, S. M.; Leigh, D. A.; Slawin, A. M. Z. J. Am. Chem. Soc. 2008, 130, 1836.
      (b) Cakmak, Y.; Erbas-Cakmak, S.; Leigh, D. A. J. Am. Chem. Soc. 2016, 138, 1749.

    41. [41]

      Dommaschk, M.; Echavarren, J.; Leigh, D. A.; Marcos, V.; Singleton, T. A. Angew. Chem., Int. Ed. 2019, 58, 14955.  doi: 10.1002/anie.201908330

    42. [42]

      De Bo, G.; Leigh, D. A.; McTernan, C. T.; Wang, S. Chem. Sci. 2017, 8, 7077.  doi: 10.1039/C7SC02462B

    43. [43]

      (a) Chaur, M. N.; Collado, D.; Lehn, J.-M. Chem.-Eur. J. 2011, 17, 248.
      (b) Su, X.; Aprahamian, I. Chem. Soc. Rev. 2014, 43, 1963.

    44. [44]

      (a) Allgeier, A. M.; Mirkin, C. A. Angew. Chem., Int. Ed. 1998, 37, 894.
      (b) Praneeth, V. K. K.; Ringenberg, M. R.; Ward, T. R. Angew. Chem., Int. Ed. 2012, 51, 10228.

    45. [45]

      Zahn, S.; Canary, J. W. Science 2000, 288, 1404.  doi: 10.1126/science.288.5470.1404

    46. [46]

      Mortezaei, S.; Catarineu, N. R.; Canary, J. W. J. Am. Chem. Soc. 2012, 134, 8054.  doi: 10.1021/ja302283s

    47. [47]

      Mortezaei, S.; Catarineu, N. R.; Duan, X.; Hu, C.; Canary, J. W. Chem. Sci. 2015, 6, 5904.  doi: 10.1039/C5SC02144H

    48. [48]

      Zhang, Q.; Cui, X.; Zhang, L.; Luo, S.; Wang, H.; Wu, Y. Angew. Chem., Int. Ed. 2015, 54, 5210.  doi: 10.1002/anie.201500070

    49. [49]

      (a) Kassem, S.; Lee, A. T. L.; Leigh, D. A.; Marcos, V.; Palmer, L. I.; Pisano, S. Nature 2017, 549, 374.
      (b) Kelly, T. R.; Snapper, M. L. Nature 2017, 549, 336.

    50. [50]

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    3. [3]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    4. [4]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    5. [5]

      Zhongrui Wang Yuwen Meng Xu Wang . 双层水凝胶的制备及其pH响应变形实验. University Chemistry, 2025, 40(8): 255-264. doi: 10.12461/PKU.DXHX202410038

    6. [6]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    7. [7]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    8. [8]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    9. [9]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    10. [10]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    11. [11]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    12. [12]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    13. [13]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    14. [14]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    15. [15]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    16. [16]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    17. [17]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    18. [18]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    19. [19]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(20)
  • Abstract views(4143)
  • HTML views(622)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return