Citation: Liu Jun, Hou Jinsong, Meng Ying, Miao Zhiying, Lin Jing, Chen Weimin. Research Progress of Antibiotics Conjugated with Siderophores[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3026-3043. doi: 10.6023/cjoc202006042 shu

Research Progress of Antibiotics Conjugated with Siderophores

  • Corresponding author: Chen Weimin, twmchen@jnu.edu.cn
  • Received Date: 21 June 2020
    Revised Date: 20 August 2020
    Available Online: 26 August 2020

    Fund Project: the National Natural Science Foundation of China 81872776Project supported by the National Natural Science Foundation of China (No. 81872776)

Figures(19)

  • The natural siderophore is a class of small-molecule iron ion chelating agents secreted by bacteria, which can be recognized by specific outer membrane receptors and transported into cytoplasm to provide iron for bacteria. Using this characteristic of siderophore, antibiotics can be coupled with them and enter into bacteria through the bacterial iron uptake system. This strategy is called "Trojan horse" strategy. Recently, cefiderocol, the first siderophore-antibiotic conjugate, was approved for marketing, which has aroused accumulated interest of scientists and pharmaceutical companies in this field. This paper provides a comprehensive review of the progress in antibiotics conjugated with siderophores from three aspects:the types of siderophore molecules, antibiotics with different action mechanisms, and the role of linkers. The basic relationship between anti-bacterial activity and three moieties of this novel type of anti-bacterial agents has been revealed. This review will provide a reference for the development of new antibiotics conjugated with siderophores.
  • 加载中
    1. [1]

      Zaman, S. B.; Hussain, M. A.; Nye, R. Mehta, V.; Mamun, K. T.; Hossain, N. Cureus 2017, 9, 1403.

    2. [2]

      Brown, E. D.; Wright, G. D. Nature 2016, 529, 336.  doi: 10.1038/nature17042

    3. [3]

      Blair, J. M.; Webber, M. A.; Baylay, A. J.; Ogbolu, D. O.; Piddock, L. J. Nat. Rev. Microbiol. 2015, 13, 42.  doi: 10.1038/nrmicro3380

    4. [4]

      Rossiter, S. E.; Fletcher, M. H.; Wuest, W. M. Chem. Rev. 2017, 117, 2415.

    5. [5]

      Lewis, K. Nat. Rev. Drug Discovery 2013, 12, 371.  doi: 10.1038/nrd3975

    6. [6]

      Abouelhassan, Y.; Garrison, A, T.; Yang, H.; Chavez-Riveros, A.; Burch, G. M.; Huigens, R. W. I. J. Med. Chem. 2019, 6, 7618.

    7. [7]

      Soares, M. P.; Weiss, G. EMBO Rep. 2015, 16, 1482.  doi: 10.15252/embr.201540558

    8. [8]

      Hider, R. C.; Kong, X. Nat. Prod. Rep. 2010, 27, 637.  doi: 10.1039/b906679a

    9. [9]

      Gorska, A.; Sloderbach, A.; Marszall, M. P. Trends Pharmacol. Sci. 2014, 35, 442.  doi: 10.1016/j.tips.2014.06.007

    10. [10]

      Page, M. G. Ann. N. Y. Acad. Sci. 2013, 1277, 115.  doi: 10.1111/nyas.12024

    11. [11]

      Ferguson, A. D.; Braun, V.; Fiedler, H. P.; Coulton, J. W.; Diederichs, K.; Welte, W. Protein Sci. 2000, 9, 956.  doi: 10.1110/ps.9.5.956

    12. [12]

      Clarke, T. E.; Braun, V.; Winkelmann, G.; TariL, W.; Vogel, H. J. J. Biol. Chem. 2002, 277, 13966.  doi: 10.1074/jbc.M109385200

    13. [13]

      Braun, V.; Pramanik, A.; Gwinner, T.; Koberle, M.; Bohn, E. Biometals 2009, 22, 3.  doi: 10.1007/s10534-008-9199-7

    14. [14]

      Juarez-Hernandez, R. E.; Miller, P. A.; Miller, M. J. ACS Med. Chem. Lett. 2012, 3, 799.  doi: 10.1021/ml300150y

    15. [15]

      Vertesy, L.; Aretz, W.; Fehlhaber, H. W.; Kogler H. Helv. Chim. Aata 1995, 78, 46.  doi: 10.1002/hlca.19950780105

    16. [16]

      Roosenberg, J. M.; Miller, M. J. J. Org. Chem. 2000, 65, 4833  doi: 10.1021/jo000050m

    17. [17]

      Braun, V. K.; Günthner, H.; Zimmermann, L. J. Bacteriol. 1983, 156, 308.  doi: 10.1128/JB.156.1.308-315.1983

    18. [18]

      Saha, M.; Sarkar, S.; Sarkar, B.; Sharma, B. K.; Bhattacharjee, S.; Tribedi, P. Environ. Sci. Pollut. Res. Int. 2016, 23, 3984.  doi: 10.1007/s11356-015-4294-0

    19. [19]

      Bilitewski, U.; Blodgett, J. Duhme-Klair, A.K.; Dallavalle, S. Laschat, S.; Routledge, A.; Schobert, R. Angew. Chem., Int. Ed. 2017, 56, 14360.  doi: 10.1002/anie.201701586

    20. [20]

      Abouelhassan, Y.; Garrison, A. T.; Yang, H.; Chavez-Riveros, A.; Burch, G. M.; Huigens, R. R. J. Med. Chem. 2019, 62, 7618.  doi: 10.1021/acs.jmedchem.9b00370

    21. [21]

      Madsen, J. L.; Johnstone, T. C.; Nolan, E. M. J. Am. Chem. Soc. 2015, 137, 9117.  doi: 10.1021/jacs.5b04557

    22. [22]

      Ji, C.; Miller, P. A.; Miller, M. J. J. Am. Chem. Soc. 2012, 134, 9898.  doi: 10.1021/ja303446w

    23. [23]

      Mislin, G. L.; Schalk, I. J. Metallomics 2014, 6, 408.  doi: 10.1039/C3MT00359K

    24. [24]

      Muller, G.; Barclay, S. J.; Raymond, K. N. J. Biol. Chem. 1985, 260, 13916.

    25. [25]

      Sayer, J. M.; Emery, T. F. Biochemistry 1968, 7, 184.  doi: 10.1021/bi00841a023

    26. [26]

      Krewulak, K. D.; Vogel, H. J. Biochim. Biophys. Acta 2008, 1778, 1781.  doi: 10.1016/j.bbamem.2007.07.026

    27. [27]

      Miethke, M.; Marahiel, M. A. Microbiol. Mol. Biol. Rev. 2007, 71, 413.  doi: 10.1128/MMBR.00012-07

    28. [28]

      Winkelmann, G. Biometals 2007, 20, 379.  doi: 10.1007/s10534-006-9076-1

    29. [29]

      Mollmann, U.; Heinisch, L.; Bauernfeind, A.; Kohler, T.; Ankel-Fuchs, D. Biometals 2009, 22, 615.  doi: 10.1007/s10534-009-9219-2

    30. [30]

      Ballouche, M.; Cornelis, P.; Baysse, C. Recent Pat. Anti-Infect. Drug Discovery 2009, 4, 190.

    31. [31]

      Murphy-Benenato, K. E.; Bhagunde, P. R.; Chen, A; Davis, H. E.; Durand-Reville, T. F.; Ehmann, D. E. J. Med. Chem. 2015, 58, 2159.  doi: 10.1021/jm5012484

    32. [32]

      Dolence, E. K.; Minnick, A. A.; Miller, M. J. J. Med. Chem. 1990, 33, 461.  doi: 10.1021/jm00164a001

    33. [33]

      Mckee, J. A.; Sharma, S. K.; Miller, M. J. Bioconjugate Chem. 1991, 2, 281.  doi: 10.1021/bc00010a013

    34. [34]

      Ramurthy, S.; Miller, M. J. J. Org. Chem. 1996, 61, 4120.  doi: 10.1021/jo9600621

    35. [35]

      Minnick, A. A.; Mckee, J. A.; Dolence, E. K.; Miller, M. J. Antimicrob. Agents Chem. 1992, 36, 840.  doi: 10.1128/AAC.36.4.840

    36. [36]

      Ghosh, A.; Ghosh, M.; Niu, C.; Malouin, F.; Moellmann, U.; Miller, M. J. Chem. Biol. 1996, 3, 1011.  doi: 10.1016/S1074-5521(96)90167-2

    37. [37]

      Ghosh, M.; Miller, M. J. Bioorg. Med. Chem. 1996, 4, 43.  doi: 10.1016/0968-0896(95)00161-1

    38. [38]

      Kinzel, O.; Tappe, R.; Gerus, I.; Budzikiewicz, H. J. Antibiot. 1998, 51, 499.  doi: 10.7164/antibiotics.51.499

    39. [39]

      Heinisch, L.; Wittmann, S.; Stoiber, T.; Berg, A.; Ankel-Fuchs, D.; Mollmann, U. J. Med. Chem. 2002, 45, 3032.  doi: 10.1021/jm010546b

    40. [40]

      Heinisch, L.; Wittmann, S.; Stoiber, T.; Scherlitz-Hofmann, I.; Ankel-Fuchs, D.; Mollmann, U. Arzneim. Forsch. 2003, 53, 188.

    41. [41]

      Ji, C.; Miller, P. A.; Miller, M. J. J. Am. Chem. Soc. 2012, 134, 9898.  doi: 10.1021/ja303446w

    42. [42]

      Ji, C.; Miller, M. J. Bioorg. Med. Chem. 2012, 20, 3828.  doi: 10.1016/j.bmc.2012.04.034

    43. [43]

      Miller, M. J.; Zhu, H.; Xu, Y.; Wu, C.; Walz, A. J.; Vergne, A.; Roosenberg, J. M.; Moraski, G.; Minnick, A. A.; Mckee-Dolence, J.; Hu, J.; Fennell, K.; Kurtdolence, E.; Dong, L.; Franzblau, S.; Malouin, F.; Mollmann, U. Biometals 2009, 22, 61.  doi: 10.1007/s10534-008-9185-0

    44. [44]

      Cimarusti, C. M.; Sykes, R. B. Med. Res. Rev. 1984, 4, 1.  doi: 10.1002/med.2610040103

    45. [45]

      Bush, K.; Freudenberger, J. S.; Sykes, R.B. Antimicrob. Agents Chem. 1982, 22, 414.  doi: 10.1128/AAC.22.3.414

    46. [46]

      Cusnir, R.; Imberti, C.; Hider, R.C.; Blower, P. J.; Ma, M. T. Int. J. Mol. Sci. 2017, 18, 1161.  doi: 10.3390/ijms18061161

    47. [47]

      Barbachyn, M. R.; Tuominen, T. C. J. Antibiot. 1990, 43, 1199.  doi: 10.7164/antibiotics.43.1199

    48. [48]

      Han, S.; Zaniewski, R. P.; Marr, E. S.; Lacey, B. M.; Tomaras, A. P.; Evdokimov, A.; Miller, J. R.; Shanmugasundaram, V. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 22002.  doi: 10.1073/pnas.1013092107

    49. [49]

      Flanagan, M. E.; Brickner, S. J.; Lall, M.; Casavant, J.; Deschenes, L.; Finegan, S. M.; George, D. M.; Granskog, K.; Hardink, J. R.; Huband, M. D.; Thuy, H.; Lamb, L.; Marra, A.; Mitton-Fry, M.; Mueller, J. P.; Mullins, L. M.; Noe, M. C.; O'Donnell, J. P.; Pattavina, D.; Penzien, J. B.; Schuff, B. P.; Sun. J.; Whipple, D. A.; Young, J.; Gootz, T. D. ACS Med. Chem. Lett. 2011, 2, 385.  doi: 10.1021/ml200012f

    50. [50]

      Mcpherson, C. J.; Aschenbrenner, L. M.; Lacey, B. M.; Fahnoe, K. C.; Lemmon, M. M.; Finegan, S. M.; Tadakamalla, B.; O'Donnell, J. P.; Mueller, J. P.; Tomaras, A. P. Antimicrob. Agents Chemother. 2012, 56, 6334.  doi: 10.1128/AAC.01345-12

    51. [51]

      Tomaras, A. P.; Crandon, J. L.; Mcpherson, C. J.; Nicolau, D. P. Antimicrob. Agents Chemother. 2015, 59, 2439.  doi: 10.1128/AAC.04172-14

    52. [52]

      Sato, T.; Yamawaki, K. Clin. Infect. Dis 2019, 69, 529.  doi: 10.1093/cid/ciz825

    53. [53]

      Page, M. G.; Dantier, C.; Desarbre, E. Antimicrob. Agents Chemother. 2010, 54, 2291.  doi: 10.1128/AAC.01525-09

    54. [54]

      Sato, T.; Yamawaki, K. Clin. Infect. Dis. 2019, 69, S538.  doi: 10.1093/cid/ciz826

    55. [55]

      Yamano, Y.; Nishikawa, T.; Komatsu, Y. Appl. Microbiol. Biotechnol. 1994, 40, 892.  doi: 10.1007/BF00173995

    56. [56]

      Aoki, T. Yoshizawa, H.; Yamawaki, K.; Yokoo, K.; Sato, J.; Hisakawa, S.; Hasegawa, Y.; Kusano, H.; Sano, M.; Sugimoto, H.; Nishitani, Y.; Sato, T.; Tsuji, M.; Nakamura, R.; Nishikawa, T.; Yamano, Y. Eur. J. Med. Chem. 2018, 155, 847.  doi: 10.1016/j.ejmech.2018.06.014

    57. [57]

      Bird, T. G.; Arnould, J. C.; Bertrandie, A.; Jung, F. H. J. Med. Chem. 1992, 35, 2643.  doi: 10.1021/jm00092a015

    58. [58]

      Ghosh, M.; Miller, M. J. Bioorg. Med. Chem. 1995, 3, 1519.  doi: 10.1016/0968-0896(95)00134-3

    59. [59]

      Poras, H.; Kunesch, G.; Barriere, J. C.; Berthaud, N.; Andremont, A. J. Antibiot. 1998, 51, 786.  doi: 10.7164/antibiotics.51.786

    60. [60]

      Jones, R. N.; Johnson, D. M.; Erwin, M. E. Antimicrob. Agents Chemother. 1996, 40, 720.  doi: 10.1128/AAC.40.3.720

    61. [61]

      Bassetti, M.; Baguneid, M.; Bouza, E.; Dryden, M.; Nathwani, D.; Wilcox, M. Clin. Microbiol. Infect. 2014, 204, 3.

    62. [62]

      Mendes, R. E.; Hogan, P. A.; Streit, J. M.; Jones, R. N.; Flamm, R. K. Antimicrob. Agents Chemother. 2015, 59, 2454.  doi: 10.1128/AAC.04784-14

    63. [63]

      Paulen, A.; Gasser, V.; Hoegy, F.; Perraud, Q.; Pesset, B.; Schalk, I. J.; Mislin, G. L. A. Org. Biomol. Chem. 2015, 13, 11567.  doi: 10.1039/C5OB01859E

    64. [64]

      Paulen, A.; Hoegy, F.; Roche, B.; Schalk, I. J.; Mislin, G. L. A. Bioorg. Med. Chem. Lett. 2017, 27, 4867.  doi: 10.1016/j.bmcl.2017.09.039

    65. [65]

      Noel, S.; Gasser, V.; Pesset, B.; Hoegy, F.; Rognan, D.; Schalk, I. J.; Mislin, G. L. A. Org. Biomol. Chem. 2011, 9, 8288.  doi: 10.1039/c1ob06250f

    66. [66]

      Liu, R.; Miller, P. A.; Vakulenko, S. B.; Stewart, N. K.; Boggess, W. C.; Miller, M. J. J. Med. Chem. 2018, 61, 3845.  doi: 10.1021/acs.jmedchem.8b00218

    67. [67]

      Schalk, I. J. J. Med. Chem. 2018, 61, 3842.  doi: 10.1021/acs.jmedchem.8b00522

    68. [68]

      Rivault, F.; Liebert, C.; Burger, A.; Hoegy, F.; Abdallah, M. A.; Schalk, I. J.; Mislin, G. L. A. Bioorg. Med. Chem. Lett. 2007, 17, 640.  doi: 10.1016/j.bmcl.2006.11.005

    69. [69]

      Hennard, C.; Truong, Q. C.; Desnottes, J. F.; Paris, J. M.; Moreau, N. J.; Abdallah, M. A. J. Med. Chem. 2001, 44, 2139.  doi: 10.1021/jm990508g

    70. [70]

      Barrett, J. F.; Bernstein, J. I.; Krause, H. M.; Hilliard, J. J.; Ohemeng, K. A. Anal. Biochem. 1993, 214, 313.  doi: 10.1006/abio.1993.1493

    71. [71]

      Wencewicz, T. A.; Long, T. E.; Moellmann, U.; Miller, M. J. Bioconjugate Chem. 2013, 24, 473.  doi: 10.1021/bc300610f

    72. [72]

      Fardeau, S.; Dassonville-Klimpt, A.; Audic, N.; Sasaki, A.; Pillon, M.; Baudrin, E.; Mullie, C.; Sonnet, P. Bioorg. Med. Chem. 2014, 22, 4049.  doi: 10.1016/j.bmc.2014.05.067

    73. [73]

      Milstien, S.; Cohen, L. A. J. Am. Chem. Soc. 1972, 94, 9158.  doi: 10.1021/ja00781a029

    74. [74]

      Ji, C.; Miller, M. J. Bioorg. Med. Chem. 2012, 20, 3828.  doi: 10.1016/j.bmc.2012.04.034

    75. [75]

      Wilhelm, S.; Tommassen, J.; Jaeger, K. E. J. Bacteriol. 1999, 181, 6977.  doi: 10.1128/JB.181.22.6977-6986.1999

    76. [76]

      Zheng, T.; Nolan, E. M. Bioorg. Med. Chem. Lett. 2015, 25, 4987.  doi: 10.1016/j.bmcl.2015.02.034

    77. [77]

      Gupta, D.; Gupta, S. V.; Lee, K.; Amidon, G. L. Mol. Pharmaceutics 2009, 6, 1604.  doi: 10.1021/mp900084v

    78. [78]

      Neumann, W.; Sassone-Corsi, M.; Raffatellu, M.; Nolan, E. M. J. Am. Chem. Soc. 2018, 140, 5193.  doi: 10.1021/jacs.8b01042

    79. [79]

      Zheng, T.; Bullock, J. L.; Nolan, E. M. J. Am. Chem. Soc. 2012, 134, 18388.  doi: 10.1021/ja3077268

    80. [80]

      Neumann, W.; Nolan, E. M. J. Biol. Inorg. Chem. 2018, 23, 1025.  doi: 10.1007/s00775-018-1588-y

    81. [81]

      Taylor, S. D.; Palmer, M. Bioorg. Med. Chem. 2016, 24, 6253.  doi: 10.1016/j.bmc.2016.05.052

    82. [82]

      Ghosh, M.; Miller, P. A.; Mollmann, U.; Claypool, W. D.; Schroeder, V. A.; Wolter, W. R.; Suckow, M.; Yu, H.; Li, S.; Huang, W.; Zajicek, J.; Miller, M. J. J. Med. Chem. 2017.; 60, 4577.  doi: 10.1021/acs.jmedchem.7b00102

    83. [83]

      Ghosh, M.; Lin, Y. M.; Miller, P. A.; Mollmann, U.; Boggess, W. C.; Miller, M. J. ACS Infect. Dis. 2018, 4, 1529.  doi: 10.1021/acsinfecdis.8b00150

    84. [84]

      Randall, C. P.; Mariner, K. R.; Chopra, I.; O'Neill, A. J. Antimicrob. Agents Chemother. 2013, 57, 637.  doi: 10.1128/AAC.02005-12

    85. [85]

      Kraaij, C.; Vos, W. M.; Siezen, R. J.; Kuipers, O. P. Nat. Prod. Rep. 1999, 16, 575.  doi: 10.1039/a804531c

    86. [86]

      Willey, J. M.; Donk, W.A. Annu. Rev. Microbiol. 2007, 61, 477.  doi: 10.1146/annurev.micro.61.080706.093501

    87. [87]

      Yoganathan, S.; Sit, C. S.; Vederas, J. C. Org. Biomol. Chem. 2011, 9, 2133.  doi: 10.1039/c0ob00846j

    88. [88]

      Wencewicz, T. A.; Mollmann, U.; Long, T. E.; Miller, M. J. Biometals 2009, 22, 633.  doi: 10.1007/s10534-009-9218-3

    89. [89]

      Maiden, M. M.; Hunt, A.; Zachos, M. P.; Gibson, J. A.; Hurwitz, M. E.; Mulks, M. H.; Waters, C. M. Antimicrob. Agents Chemother. 2018, 62, 96.

    90. [90]

      Heath, R. J.; Rubin, J. R.; Holland, D. R.; Zhang, E.; Snow, M. E.; Rock, C. O. J. Biol. Chem. 1999, 274, 11110.  doi: 10.1074/jbc.274.16.11110

    91. [91]

      Bernier, G.; Girijavallabhan, V.; Murray, A.; Niyaz, N.; Ding, P.; Miller, M. J.; Malouin, F. Antimicrob. Agents Chemother. 2005, 49, 241.  doi: 10.1128/AAC.49.1.241-248.2005

    92. [92]

      Yamamoto, K.; Shiinoki, Y.; Nishio, M.; Matsuda, Y.; Inouye, Y.; Nakamura, S. J. Antibiot. 1990, 43, 1012.  doi: 10.7164/antibiotics.43.1012

    93. [93]

      Mollmann, U.; Ghosh, A.; Dolence, E. K.; Dolence, J. A.; Ghosh, M.; Miller, M. J.; Reissbrodt, R. Biometals 1998, 11, 1.  doi: 10.1023/A:1009266705308

    94. [94]

      Rivault, F.; Liebert, C.; Burger, A.; Hoegy, F.; Abdallah, M. A.; Schalk, I. J.; Mislin, G. L. Bioorg. Med. Chem. Lett. 2007, 17, 640.  doi: 10.1016/j.bmcl.2006.11.005

    95. [95]

      Souto, A.; Montaos, M. A.; Balado, M.; Osorio, C. R.; Rodriguez, J.; Lemos, M. L.; Jimenez, C. Bioorg. Med. Chem. 2013, 21, 295.  doi: 10.1016/j.bmc.2012.10.028

    96. [96]

      Milner, S. J.; Seve, A.; Snelling, A. M.; Thomas, G. H.; Kerr, K. G.; Routledge, A.; Duhme-Klair, A. K. Org. Biomol. Chem. 2013, 11, 3461.  doi: 10.1039/c3ob40162f

  • 加载中
    1. [1]

      Jijun Sun Qianlang Wang Qian Chen Quanqin Zhao Shumei Zhai . The Antibiotic Legion’s Manifesto to Human Allies. University Chemistry, 2025, 40(4): 307-321. doi: 10.12461/PKU.DXHX202405206

    2. [2]

      Peiling Li Qing Feng Hongling Yuan Qin Wang . Live Interview Recording about the Penicillin Family. University Chemistry, 2024, 39(9): 122-127. doi: 10.3866/PKU.DXHX202311022

    3. [3]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    4. [4]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    5. [5]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    6. [6]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    7. [7]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    8. [8]

      Chao Liu Huan Yu Jiaming Li Xi Yu Zhuangzhi Yu Yuxi Song Feng Zhang Qinfang Zhang Zhigang Zou . Facile synthesis of hierarchical Ti3C2/Bi12O17Br2 Schottky heterojunction with photothermal effect for solar-driven antibiotics photodegradation. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-. doi: 10.1016/j.actphy.2025.100075

    9. [9]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    10. [10]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    11. [11]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    12. [12]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    13. [13]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    14. [14]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    15. [15]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    16. [16]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    17. [17]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    18. [18]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    19. [19]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    20. [20]

      Yukun Xing Xiaoyu Xie Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006

Metrics
  • PDF Downloads(142)
  • Abstract views(4464)
  • HTML views(1462)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return