Citation: Yang Yang, Li Ruomei, Wang Wei, Xu Zi-Wen, Xie Guanghui, Lu Zhengquan, Li Jingjing, Song Liping, Li Wei-Shi. Research Advances on the Mechanism of Polymer Solubilization and Selective Separation of Single-Wall Carbon Nanotubes[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3249-3261. doi: 10.6023/cjoc202006019 shu

Research Advances on the Mechanism of Polymer Solubilization and Selective Separation of Single-Wall Carbon Nanotubes

  • Corresponding author: Song Liping, lpsong@shu.edu.cn Li Wei-Shi, liws@mail.sioc.ac.cn
  • Received Date: 11 June 2020
    Revised Date: 29 July 2020
    Available Online: 11 August 2020

    Fund Project: National Natural Science Foundation of China 21674125Project supported by the National Natural Science Foundation of China (Nos. 21674125, 21672251, 51761145043), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB20020000) and the Zhengzhou Institute of TechnologyNational Natural Science Foundation of China 51761145043Strategic Priority Research Program of Chinese Academy of Sciences XDB20020000National Natural Science Foundation of China 21672251

Figures(20)

  • Single-walled carbon nanotubes (SWNTs) prepared by present methods are a mixture of semiconducting and metallic ones, which need to be separated and purified to give them full play with their excellent properties and for their attractive applications. Among numerous developed methods, the selective separation of semiconducting and metallic SWNTs by polymer non-covalent interactions is considered to be the most simple, efficient and no-damage to carbon nanotube structure and properties method. So far, a lot of works have been reported, and many polymer systems have been developed. Meanwhile, various separation and purification mechanisms have been proposed, but there are still no unified and convincing understandings. In this review, the reported SWNT solubilization and selective separation works are summarized, the interactions between polymer and SWNTs are analyzed, and the effects of polymer structures, molecular weights, side chain lengths, polymer/SMNT ratio, temperature, and solvent are focally discussed. After comparing various separating mechanisms, our own understandings and views are put forward.
  • 加载中
    1. [1]

      Iijima, S. Nature 1991, 354, 56.  doi: 10.1038/354056a0

    2. [2]

      Carlson, L. J.; Krauss, T. D. Acc. Chem. Res. 2008, 41, 235.  doi: 10.1021/ar700136v

    3. [3]

      Zhang, H.; Wu, B.; Hu, W.; Liu, Y. Chem. Soc. Rev. 2011, 40, 1324.  doi: 10.1039/B920457C

    4. [4]

      Wang, H.; Wang, Y.; Tee, B. C. K.; Kim, K.; Lopez, J.; Cai, W.; Bao, Z. Adv. Sci. 2015, 2, 1500103.  doi: 10.1002/advs.201500103

    5. [5]

      Ha, M.; Xia, Y.; Green, A. A.; Zhang, W.; Frisbie, C. D. ACS Nano 2010, 8, 4388.

    6. [6]

      Chae, S. H.; Yu, W. J.; Bae, J. J.; Dinh Loc, D.; Perello, D.; Jeong, H. Y.; Quang Huy, T.; Thuc Hue, L.; Quoc An, V.; Yun, M.; Duan, X.; Lee, Y. H. Nat. Mater. 2013, 12, 403.  doi: 10.1038/nmat3572

    7. [7]

      Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Nat. Nanotechnol. 2006, 1, 60.  doi: 10.1038/nnano.2006.52

    8. [8]

      Krupke, R.; Hennrich, F.; Lohneysen, H.; Kappes, M. M. Science 2003, 301, 344.  doi: 10.1126/science.1086534

    9. [9]

      Zheng, M.; Jagota, A.; Strano, M. S.; Santos, A. P.; Barone, P.; Chou, S. G.; Diner, B. A.; Dresselhaus, M. S.; Mclean, R. S.; Onoa, G. B.; Samsonidze, G. G.; Semke, E. D.; Usrey, M.; Walls, D. J. Science 2003, 1545.

    10. [10]

      Nish, A.; Hwang, J. Y.; Doig, J.; Nicholas, R. J. Nat. Nanotechnol. 2007, 2, 640.  doi: 10.1038/nnano.2007.290

    11. [11]

      Lee, H. W.; Yoon, Y.; Park, S.; Oh, J. H.; Hong, S.; Liyanage, L. S.; Wang, H.; Morishita, S.; Patil, N.; Park, Y. J.; Park, J. J.; Spakowitz, A.; Galli, G.; Gygi, F.; Wong, P. H.; Tok, J. B.; Kim, J. M.; Bao, Z. Nat. Commun. 2011, 2, 541.  doi: 10.1038/ncomms1545

    12. [12]

      Lemasson, F. A.; Strunk, T.; Gerstel, P.; Hennrich, F.; Lebedkin, S.; Barner-Kowollik, C.; Wenzel, W.; Kappes, M. M.; Mayor, M. J. Am. Chem. Soc. 2011, 133, 652.  doi: 10.1021/ja105722u

    13. [13]

      O'Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C.; Ma, J.; Hauge, R. H.; Weisman, R. B.; Smalley, R. E. Science 2002, 297, 593.  doi: 10.1126/science.1072631

    14. [14]

      Itkis, M. E.; Perea, D. E.; Jung, R.; Niyogi, S.; Haddon, R. C. J. Am. Chem. Soc. 2005, 127, 3439.  doi: 10.1021/ja043061w

    15. [15]

      Shaffer, M. S. P.; Windle, A. H. Adv. Mater. 1999, 11, 937.  doi: 10.1002/(SICI)1521-4095(199908)11:11<937::AID-ADMA937>3.0.CO;2-9

    16. [16]

      Gomulya, W.; Costanzo, G. D.; de Carvalho, E. J.; Bisri, S. Z.; Derenskyi, V.; Fritsch, M.; Frohlich, N.; Allard, S.; Gordiichuk, P.; Herrmann, A.; Marrink, S. J.; dos Santos, M. C.; Scherf, U.; Loi, M. A. Adv. Mater. 2013, 25, 2948.  doi: 10.1002/adma.201300267

    17. [17]

      Wang, H.; Bao, Z. Nano Today 2015, 10, 737.  doi: 10.1016/j.nantod.2015.11.008

    18. [18]

      Fong, D.; Adronov, A. Chem. Sci. 2017, 8, 7292.  doi: 10.1039/C7SC02942J

    19. [19]

      Vaisman, L.; Wagner, H. D.; Marom, G. Adv. Colloid Interface Sci. 2007, 128-130, 37.

    20. [20]

      Di Crescenzo, A.; Di Profio, P.; Siani, G.; Zappacosta, R.; Fontana, A. Langmuir 2016, 32, 6559.  doi: 10.1021/acs.langmuir.6b01435

    21. [21]

      Shvartzman-Cohen, R.; Levi-Kalisman, Y.; Nativ-Roth, E.; Yerushalmi-Rozen, R. Langmuir 2004, 20, 6085.  doi: 10.1021/la049344j

    22. [22]

      Yudasaka, M.; Zhang, M.; Jabs, C.; Iijima, S. Appl. Phys. A: Mater. Sci. Process. 2000, 71, 449.  doi: 10.1007/s003390000688

    23. [23]

      Di Crescenzo, A.; Aschi, M.; Fontana, A. Macromolecules 2012, 45, 8043.  doi: 10.1021/ma301534k

    24. [24]

      Yurekli, K.; Mitchell, C. A.; Krishnamoorti, R. J. Am. Chem. Soc. 2004, 126, 9902.  doi: 10.1021/ja047451u

    25. [25]

      Didenko, V. V.; Moore, V. C.; Baskin, D. S.; Smalley, R. E. Nano Lett. 2005, 5, 1563.  doi: 10.1021/nl050840h

    26. [26]

      Manivannan, S.; Jeong, I. O.; Ryu, J. H.; Lee, C. S.; Kim, K. S.; Jang, J.; Park, K. C. J. Mater. Sci.:Mater. Electron. 2009, 20, 223.

    27. [27]

      Pasquinelli, S. S. T. a. M. A. J. Phys. Chem. B 2010, 114, 4122.  doi: 10.1021/jp908001d

    28. [28]

      Curran, S. A.; Ajayan, P. M.; Blau, W. J.; Carroll, D. L.; Coleman, J. N.; Dalton, A. B.; Davey, A. P.; Drury, A.; McCarthy, B.; Maier, S.; Strevens, A. Adv. Mater. 1998, 10, 1091.  doi: 10.1002/(SICI)1521-4095(199810)10:14<1091::AID-ADMA1091>3.0.CO;2-L

    29. [29]

      Coleman, J. N.; Dalton, A. B.; Curran, S.; Rubio, A.; Davey, A. P.; Drury, A.; McCarthy, B.; Lahr, B.; Ajayan, P. M.; Roth, S.; Barklie, R. C.; Blau, W. J. Adv. Mater. 2000, 12, 213.  doi: 10.1002/(SICI)1521-4095(200002)12:3<213::AID-ADMA213>3.0.CO;2-D

    30. [30]

      Dalton, A. B.; Stephan, C.; Coleman, J. N.; McCarthy, B.; Ajayan, P. M.; Lefrant, S.; Bernier, P.; Blau, W. J.; Byrne, H. J. J. Phys. Chem. B 2000, 104, 10012.  doi: 10.1021/jp002857o

    31. [31]

      Yi, W.; Malkovskiy, A.; Xu, Y.; Wang, X.-Q.; Sokolov, A. P.; Lebron-Colon, M.; Meador, M. A.; Pang, Y. Polymer 2010, 51, 475.  doi: 10.1016/j.polymer.2009.11.052

    32. [32]

      In het Panhuis, M.; Maiti, A.; Dalton, A. B.; van den Noort, A.; Coleman, J. N.; McCarthy, B.; Blau, W. J. J. Phys. Chem. B 2003, 107, 478.  doi: 10.1021/jp026470s

    33. [33]

      Yi, W.; Malkovskiy, A.; Chu, Q.; Sokolov, A. P.; Colon, M. L.; Meador, M.; Pang, Y. J. Phys. Chem. B 2008, 112, 12263.

    34. [34]

      Chen, J.; Liu, H.; Weimer, W. A.; Halls, M. D.; Waldeck, D. H.; Walker, G. C. J. Am. Chem. Soc. 2002, 124, 9034.  doi: 10.1021/ja026104m

    35. [35]

      Kang, Y. K.; Lee, O.-S.; Deria, P.; Kim, S. H.; Park, T.-H.; Bonnell, D. A.; Saven, J. G.; Therien, M. J. Nano Lett. 2009, 9, 1414.  doi: 10.1021/nl8032334

    36. [36]

      Chen, Y.; Xu, Y.; Wang, Q.; Gunasinghe, R. N.; Wang, X. Q.; Pang, Y. Small 2013, 9, 870.  doi: 10.1002/smll.201202103

    37. [37]

      Wei, X.; Maimaitiyiming, X. Macromol. Chem. Phys. 2020, 221.

    38. [38]

      Tange, M.; Okazaki, T.; Iijima, S. J. Am. Chem. Soc. 2011, 133, 11908.  doi: 10.1021/ja204698d

    39. [39]

      Berton, N.; Lemasson, F.; Poschlad, A.; Meded, V.; Tristram, F.; Wenzel, W.; Hennrich, F.; Kappes, M. M.; Mayor, M. Small 2014, 10, 360.  doi: 10.1002/smll.201301295

    40. [40]

      Aumaitre, C.; Fong, D.; Adronov, A.; Morin, J.-F. Polym. Chem. 2019, 10, 6440.  doi: 10.1039/C9PY01603A

    41. [41]

      Fukumaru, T.; Toshimitsu, F.; Fujigaya, T.; Nakashima, N. Nanoscale 2014, 6, 5879.  doi: 10.1039/c4nr00809j

    42. [42]

      Foroutan, M.; Nasrabadi, A. T. J. Phys. Chem. B 2010, 114, 5320.

    43. [43]

      Stranks, S. D.; Habisreutinger, S. N.; Dirks, B.; Nicholas, R. J. Adv. Mater. 2013, 25, 4365.  doi: 10.1002/adma.201205250

    44. [44]

      Imin, P.; Cheng, F.; Adronov, A. Polym. Chem. 2011, 2, 411.  doi: 10.1039/C0PY00286K

    45. [45]

      Wang, H.; Koleilat, G. I.; Liu, P.; Jiménez-Osés, G.; Lai, Y.-C.; Vosgueritchian, M.; Fang, Y.; Park, S.; Houk, K. N.; Bao, Z. ACS Nano 2014, 8, 2609.  doi: 10.1021/nn406256y

    46. [46]

      Lee, M.-H.; Lee, S.-H.; Kim, J.; Lee, S. Y.; Lim, D.-H.; Hwang, K.; Hwang, H.; Jung, Y. C.; Noh, Y.-Y.; Kim, D.-Y. Carbon 2017, 125, 571.  doi: 10.1016/j.carbon.2017.09.068

    47. [47]

      Gomulya, W.; Derenskyi, V.; Kozma, E.; Pasini, M.; Loi, M. A. Adv. Funct. Mater. 2015, 25, 5858.  doi: 10.1002/adfm.201502912

    48. [48]

      Lei, T.; Pitner, G.; Chen, X.; Hong, G.; Park, S.; Hayoz, P.; Weitz, R. T.; Wong, H.-S. P.; Bao, Z. Adv. Electron. Mater. 2016, 2, 1500299.  doi: 10.1002/aelm.201500299

    49. [49]

      Min, S. H.; Kim, H.-I.; Kim, K.-S.; Cha, I.; Ha, S.; Yun, W. S.; Kwak, S. K.; Kim, J.-H.; Kim, B.-S.; Song, C. Polymer 2016, 96, 63.  doi: 10.1016/j.polymer.2016.04.063

    50. [50]

      Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; McLean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. Nat. Mater. 2003, 2, 338.  doi: 10.1038/nmat877

    51. [51]

      Zaremba, O.; Goldt, A.; Ramirez-Morales, M.; Khabushev, E. M.; Shulga, E.; Eremin, T.; Prikazchikova, T.; Orekhov, A.; Grebenko, A.; Zatsepin, T. S.; Obraztsova, E. D.; Nasibulin, A. G. Carbon 2019, 151, 175.  doi: 10.1016/j.carbon.2019.05.076

    52. [52]

      Li, H.; Zhou, B.; Lin, Y.; Gu, L.; Wang, W.; Fernando, K. A. S.; Kumar, S.; Allard, L. F.; Sun, Y.-P. J. Am. Chem. Soc. 2004, 126, 1014.  doi: 10.1021/ja037142o

    53. [53]

      Yan, L. Y.; Li, W.; Fan, X. F.; Wei, L.; Chen, Y.; Kuo, J.-L.; Li, L.-J.; Kwak, S. K.; Mu, Y.; Chan-Park, M. B. Small 2010, 6, 110.  doi: 10.1002/smll.200900865

    54. [54]

      Murakami, H.; Nomura, T.; Nakashima, N. Chem. Phys. Lett. 2003, 378, 481.  doi: 10.1016/S0009-2614(03)01329-0

    55. [55]

      Gifford, B. J.; Weight, B. M.; Kilina, S. J. Phys. Chem. C 2019, 123, 24807.  doi: 10.1021/acs.jpcc.9b04869

    56. [56]

      Han, J.; Ji, Q.; Qiu, S.; Li, H.; Zhang, S.; Jin, H.; Li, Q. Chem. Commun. 2015, 51, 4712.  doi: 10.1039/C5CC00167F

    57. [57]

      Gomulya, W.; Rios, J. M. S.; Derenskyi, V.; Bisri, S. Z.; Jung, S.; Fritsch, M.; Allard, S.; Scherf, U.; dos Santos, M. C.; Loi, M. A. Carbon 2015, 84, 66.  doi: 10.1016/j.carbon.2014.11.037

    58. [58]

      Chen, F.; Wang, B.; Chen, Y.; Li, L.-J. Nano Lett. 2007, 7, 3013.  doi: 10.1021/nl071349o

    59. [59]

      Jakubka, F.; Schießl, S. P.; Martin, S.; Englert, J. M.; Hauke, F.; Hirsch, A.; Zaumseil, J. ACS Macro Lett. 2012, 1, 815.  doi: 10.1021/mz300147g

    60. [60]

      Rice, N. A.; Subrahmanyam, A. V.; Laengert, S. E.; Adronov, A. J. Polym. Sci., Part A:Polym. Chem. 2015, 53, 2510.  doi: 10.1002/pola.27715

    61. [61]

      Lei, T.; Chen, X.; Pitner, G.; Wong, H. S.; Bao, Z. J. Am. Chem. Soc. 2016, 138, 802.  doi: 10.1021/jacs.5b12797

    62. [62]

      Fong, D.; Adronov, A. Macromolecules 2017, 50, 8002.  doi: 10.1021/acs.macromol.7b01834

    63. [63]

      Hwang, J.-Y.; Nish, A.; Doig, J.; Douven, S.; Chen, C.-W.; Chen, L.-C.; Nicholas, R. J. J. Am. Chem. Soc. 2008, 130, 3543.  doi: 10.1021/ja0777640

  • 加载中
    1. [1]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    2. [2]

      Weiliang Wang Zijing Yu Jingyuan Li Hong Shang . The Debate between Traditional Chinese Medicine and Western Medicine. University Chemistry, 2024, 39(9): 109-114. doi: 10.12461/PKU.DXHX202402001

    3. [3]

      Hongling Liu Yue Xia Guang Xu Yafei Yang Chunhua Qu . Bitter Cold Medicine, Good for Healing. University Chemistry, 2025, 40(3): 328-332. doi: 10.12461/PKU.DXHX202405039

    4. [4]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    5. [5]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    6. [6]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    7. [7]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    8. [8]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    9. [9]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    10. [10]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    11. [11]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    12. [12]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . Efficient adsorption of hardness ions by a mordenite-loaded, nitrogen-doped porous carbon nanofiber cathode in capacitive deionization. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    15. [15]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    16. [16]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    17. [17]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    18. [18]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    19. [19]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    20. [20]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

Metrics
  • PDF Downloads(9)
  • Abstract views(1805)
  • HTML views(190)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return