Research Advances on the Mechanism of Polymer Solubilization and Selective Separation of Single-Wall Carbon Nanotubes
- Corresponding author: Song Liping, lpsong@shu.edu.cn Li Wei-Shi, liws@mail.sioc.ac.cn
Citation:
Yang Yang, Li Ruomei, Wang Wei, Xu Zi-Wen, Xie Guanghui, Lu Zhengquan, Li Jingjing, Song Liping, Li Wei-Shi. Research Advances on the Mechanism of Polymer Solubilization and Selective Separation of Single-Wall Carbon Nanotubes[J]. Chinese Journal of Organic Chemistry,
;2020, 40(10): 3249-3261.
doi:
10.6023/cjoc202006019
Iijima, S. Nature 1991, 354, 56.
doi: 10.1038/354056a0
Carlson, L. J.; Krauss, T. D. Acc. Chem. Res. 2008, 41, 235.
doi: 10.1021/ar700136v
Zhang, H.; Wu, B.; Hu, W.; Liu, Y. Chem. Soc. Rev. 2011, 40, 1324.
doi: 10.1039/B920457C
Wang, H.; Wang, Y.; Tee, B. C. K.; Kim, K.; Lopez, J.; Cai, W.; Bao, Z. Adv. Sci. 2015, 2, 1500103.
doi: 10.1002/advs.201500103
Ha, M.; Xia, Y.; Green, A. A.; Zhang, W.; Frisbie, C. D. ACS Nano 2010, 8, 4388.
Chae, S. H.; Yu, W. J.; Bae, J. J.; Dinh Loc, D.; Perello, D.; Jeong, H. Y.; Quang Huy, T.; Thuc Hue, L.; Quoc An, V.; Yun, M.; Duan, X.; Lee, Y. H. Nat. Mater. 2013, 12, 403.
doi: 10.1038/nmat3572
Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Nat. Nanotechnol. 2006, 1, 60.
doi: 10.1038/nnano.2006.52
Krupke, R.; Hennrich, F.; Lohneysen, H.; Kappes, M. M. Science 2003, 301, 344.
doi: 10.1126/science.1086534
Zheng, M.; Jagota, A.; Strano, M. S.; Santos, A. P.; Barone, P.; Chou, S. G.; Diner, B. A.; Dresselhaus, M. S.; Mclean, R. S.; Onoa, G. B.; Samsonidze, G. G.; Semke, E. D.; Usrey, M.; Walls, D. J. Science 2003, 1545.
Nish, A.; Hwang, J. Y.; Doig, J.; Nicholas, R. J. Nat. Nanotechnol. 2007, 2, 640.
doi: 10.1038/nnano.2007.290
Lee, H. W.; Yoon, Y.; Park, S.; Oh, J. H.; Hong, S.; Liyanage, L. S.; Wang, H.; Morishita, S.; Patil, N.; Park, Y. J.; Park, J. J.; Spakowitz, A.; Galli, G.; Gygi, F.; Wong, P. H.; Tok, J. B.; Kim, J. M.; Bao, Z. Nat. Commun. 2011, 2, 541.
doi: 10.1038/ncomms1545
Lemasson, F. A.; Strunk, T.; Gerstel, P.; Hennrich, F.; Lebedkin, S.; Barner-Kowollik, C.; Wenzel, W.; Kappes, M. M.; Mayor, M. J. Am. Chem. Soc. 2011, 133, 652.
doi: 10.1021/ja105722u
O'Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C.; Ma, J.; Hauge, R. H.; Weisman, R. B.; Smalley, R. E. Science 2002, 297, 593.
doi: 10.1126/science.1072631
Itkis, M. E.; Perea, D. E.; Jung, R.; Niyogi, S.; Haddon, R. C. J. Am. Chem. Soc. 2005, 127, 3439.
doi: 10.1021/ja043061w
Shaffer, M. S. P.; Windle, A. H. Adv. Mater. 1999, 11, 937.
doi: 10.1002/(SICI)1521-4095(199908)11:11<937::AID-ADMA937>3.0.CO;2-9
Gomulya, W.; Costanzo, G. D.; de Carvalho, E. J.; Bisri, S. Z.; Derenskyi, V.; Fritsch, M.; Frohlich, N.; Allard, S.; Gordiichuk, P.; Herrmann, A.; Marrink, S. J.; dos Santos, M. C.; Scherf, U.; Loi, M. A. Adv. Mater. 2013, 25, 2948.
doi: 10.1002/adma.201300267
Wang, H.; Bao, Z. Nano Today 2015, 10, 737.
doi: 10.1016/j.nantod.2015.11.008
Fong, D.; Adronov, A. Chem. Sci. 2017, 8, 7292.
doi: 10.1039/C7SC02942J
Vaisman, L.; Wagner, H. D.; Marom, G. Adv. Colloid Interface Sci. 2007, 128-130, 37.
Di Crescenzo, A.; Di Profio, P.; Siani, G.; Zappacosta, R.; Fontana, A. Langmuir 2016, 32, 6559.
doi: 10.1021/acs.langmuir.6b01435
Shvartzman-Cohen, R.; Levi-Kalisman, Y.; Nativ-Roth, E.; Yerushalmi-Rozen, R. Langmuir 2004, 20, 6085.
doi: 10.1021/la049344j
Yudasaka, M.; Zhang, M.; Jabs, C.; Iijima, S. Appl. Phys. A: Mater. Sci. Process. 2000, 71, 449.
doi: 10.1007/s003390000688
Di Crescenzo, A.; Aschi, M.; Fontana, A. Macromolecules 2012, 45, 8043.
doi: 10.1021/ma301534k
Yurekli, K.; Mitchell, C. A.; Krishnamoorti, R. J. Am. Chem. Soc. 2004, 126, 9902.
doi: 10.1021/ja047451u
Didenko, V. V.; Moore, V. C.; Baskin, D. S.; Smalley, R. E. Nano Lett. 2005, 5, 1563.
doi: 10.1021/nl050840h
Manivannan, S.; Jeong, I. O.; Ryu, J. H.; Lee, C. S.; Kim, K. S.; Jang, J.; Park, K. C. J. Mater. Sci.:Mater. Electron. 2009, 20, 223.
Pasquinelli, S. S. T. a. M. A. J. Phys. Chem. B 2010, 114, 4122.
doi: 10.1021/jp908001d
Curran, S. A.; Ajayan, P. M.; Blau, W. J.; Carroll, D. L.; Coleman, J. N.; Dalton, A. B.; Davey, A. P.; Drury, A.; McCarthy, B.; Maier, S.; Strevens, A. Adv. Mater. 1998, 10, 1091.
doi: 10.1002/(SICI)1521-4095(199810)10:14<1091::AID-ADMA1091>3.0.CO;2-L
Coleman, J. N.; Dalton, A. B.; Curran, S.; Rubio, A.; Davey, A. P.; Drury, A.; McCarthy, B.; Lahr, B.; Ajayan, P. M.; Roth, S.; Barklie, R. C.; Blau, W. J. Adv. Mater. 2000, 12, 213.
doi: 10.1002/(SICI)1521-4095(200002)12:3<213::AID-ADMA213>3.0.CO;2-D
Dalton, A. B.; Stephan, C.; Coleman, J. N.; McCarthy, B.; Ajayan, P. M.; Lefrant, S.; Bernier, P.; Blau, W. J.; Byrne, H. J. J. Phys. Chem. B 2000, 104, 10012.
doi: 10.1021/jp002857o
Yi, W.; Malkovskiy, A.; Xu, Y.; Wang, X.-Q.; Sokolov, A. P.; Lebron-Colon, M.; Meador, M. A.; Pang, Y. Polymer 2010, 51, 475.
doi: 10.1016/j.polymer.2009.11.052
In het Panhuis, M.; Maiti, A.; Dalton, A. B.; van den Noort, A.; Coleman, J. N.; McCarthy, B.; Blau, W. J. J. Phys. Chem. B 2003, 107, 478.
doi: 10.1021/jp026470s
Yi, W.; Malkovskiy, A.; Chu, Q.; Sokolov, A. P.; Colon, M. L.; Meador, M.; Pang, Y. J. Phys. Chem. B 2008, 112, 12263.
Chen, J.; Liu, H.; Weimer, W. A.; Halls, M. D.; Waldeck, D. H.; Walker, G. C. J. Am. Chem. Soc. 2002, 124, 9034.
doi: 10.1021/ja026104m
Kang, Y. K.; Lee, O.-S.; Deria, P.; Kim, S. H.; Park, T.-H.; Bonnell, D. A.; Saven, J. G.; Therien, M. J. Nano Lett. 2009, 9, 1414.
doi: 10.1021/nl8032334
Chen, Y.; Xu, Y.; Wang, Q.; Gunasinghe, R. N.; Wang, X. Q.; Pang, Y. Small 2013, 9, 870.
doi: 10.1002/smll.201202103
Wei, X.; Maimaitiyiming, X. Macromol. Chem. Phys. 2020, 221.
Tange, M.; Okazaki, T.; Iijima, S. J. Am. Chem. Soc. 2011, 133, 11908.
doi: 10.1021/ja204698d
Berton, N.; Lemasson, F.; Poschlad, A.; Meded, V.; Tristram, F.; Wenzel, W.; Hennrich, F.; Kappes, M. M.; Mayor, M. Small 2014, 10, 360.
doi: 10.1002/smll.201301295
Aumaitre, C.; Fong, D.; Adronov, A.; Morin, J.-F. Polym. Chem. 2019, 10, 6440.
doi: 10.1039/C9PY01603A
Fukumaru, T.; Toshimitsu, F.; Fujigaya, T.; Nakashima, N. Nanoscale 2014, 6, 5879.
doi: 10.1039/c4nr00809j
Foroutan, M.; Nasrabadi, A. T. J. Phys. Chem. B 2010, 114, 5320.
Stranks, S. D.; Habisreutinger, S. N.; Dirks, B.; Nicholas, R. J. Adv. Mater. 2013, 25, 4365.
doi: 10.1002/adma.201205250
Imin, P.; Cheng, F.; Adronov, A. Polym. Chem. 2011, 2, 411.
doi: 10.1039/C0PY00286K
Wang, H.; Koleilat, G. I.; Liu, P.; Jiménez-Osés, G.; Lai, Y.-C.; Vosgueritchian, M.; Fang, Y.; Park, S.; Houk, K. N.; Bao, Z. ACS Nano 2014, 8, 2609.
doi: 10.1021/nn406256y
Lee, M.-H.; Lee, S.-H.; Kim, J.; Lee, S. Y.; Lim, D.-H.; Hwang, K.; Hwang, H.; Jung, Y. C.; Noh, Y.-Y.; Kim, D.-Y. Carbon 2017, 125, 571.
doi: 10.1016/j.carbon.2017.09.068
Gomulya, W.; Derenskyi, V.; Kozma, E.; Pasini, M.; Loi, M. A. Adv. Funct. Mater. 2015, 25, 5858.
doi: 10.1002/adfm.201502912
Lei, T.; Pitner, G.; Chen, X.; Hong, G.; Park, S.; Hayoz, P.; Weitz, R. T.; Wong, H.-S. P.; Bao, Z. Adv. Electron. Mater. 2016, 2, 1500299.
doi: 10.1002/aelm.201500299
Min, S. H.; Kim, H.-I.; Kim, K.-S.; Cha, I.; Ha, S.; Yun, W. S.; Kwak, S. K.; Kim, J.-H.; Kim, B.-S.; Song, C. Polymer 2016, 96, 63.
doi: 10.1016/j.polymer.2016.04.063
Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; McLean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. Nat. Mater. 2003, 2, 338.
doi: 10.1038/nmat877
Zaremba, O.; Goldt, A.; Ramirez-Morales, M.; Khabushev, E. M.; Shulga, E.; Eremin, T.; Prikazchikova, T.; Orekhov, A.; Grebenko, A.; Zatsepin, T. S.; Obraztsova, E. D.; Nasibulin, A. G. Carbon 2019, 151, 175.
doi: 10.1016/j.carbon.2019.05.076
Li, H.; Zhou, B.; Lin, Y.; Gu, L.; Wang, W.; Fernando, K. A. S.; Kumar, S.; Allard, L. F.; Sun, Y.-P. J. Am. Chem. Soc. 2004, 126, 1014.
doi: 10.1021/ja037142o
Yan, L. Y.; Li, W.; Fan, X. F.; Wei, L.; Chen, Y.; Kuo, J.-L.; Li, L.-J.; Kwak, S. K.; Mu, Y.; Chan-Park, M. B. Small 2010, 6, 110.
doi: 10.1002/smll.200900865
Murakami, H.; Nomura, T.; Nakashima, N. Chem. Phys. Lett. 2003, 378, 481.
doi: 10.1016/S0009-2614(03)01329-0
Gifford, B. J.; Weight, B. M.; Kilina, S. J. Phys. Chem. C 2019, 123, 24807.
doi: 10.1021/acs.jpcc.9b04869
Han, J.; Ji, Q.; Qiu, S.; Li, H.; Zhang, S.; Jin, H.; Li, Q. Chem. Commun. 2015, 51, 4712.
doi: 10.1039/C5CC00167F
Gomulya, W.; Rios, J. M. S.; Derenskyi, V.; Bisri, S. Z.; Jung, S.; Fritsch, M.; Allard, S.; Scherf, U.; dos Santos, M. C.; Loi, M. A. Carbon 2015, 84, 66.
doi: 10.1016/j.carbon.2014.11.037
Chen, F.; Wang, B.; Chen, Y.; Li, L.-J. Nano Lett. 2007, 7, 3013.
doi: 10.1021/nl071349o
Jakubka, F.; Schießl, S. P.; Martin, S.; Englert, J. M.; Hauke, F.; Hirsch, A.; Zaumseil, J. ACS Macro Lett. 2012, 1, 815.
doi: 10.1021/mz300147g
Rice, N. A.; Subrahmanyam, A. V.; Laengert, S. E.; Adronov, A. J. Polym. Sci., Part A:Polym. Chem. 2015, 53, 2510.
doi: 10.1002/pola.27715
Lei, T.; Chen, X.; Pitner, G.; Wong, H. S.; Bao, Z. J. Am. Chem. Soc. 2016, 138, 802.
doi: 10.1021/jacs.5b12797
Fong, D.; Adronov, A. Macromolecules 2017, 50, 8002.
doi: 10.1021/acs.macromol.7b01834
Hwang, J.-Y.; Nish, A.; Doig, J.; Douven, S.; Chen, C.-W.; Chen, L.-C.; Nicholas, R. J. J. Am. Chem. Soc. 2008, 130, 3543.
doi: 10.1021/ja0777640
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
Weiliang Wang , Zijing Yu , Jingyuan Li , Hong Shang . The Debate between Traditional Chinese Medicine and Western Medicine. University Chemistry, 2024, 39(9): 109-114. doi: 10.12461/PKU.DXHX202402001
Hongling Liu , Yue Xia , Guang Xu , Yafei Yang , Chunhua Qu . Bitter Cold Medicine, Good for Healing. University Chemistry, 2025, 40(3): 328-332. doi: 10.12461/PKU.DXHX202405039
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
Huiying Xu , Minghui Liang , Zhi Zhou , Hui Gao , Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011
Ruiying WANG , Hui WANG , Fenglan CHAI , Zhinan ZUO , Benlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052
Dongdong Yao , JunweiGu , Yi Yan , Junliang Zhang , Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
Jun Huang , Pengfei Nie , Yongchao Lu , Jiayang Li , Yiwen Wang , Jianyun Liu . Efficient adsorption of hardness ions by a mordenite-loaded, nitrogen-doped porous carbon nanofiber cathode in capacitive deionization. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Zhongxin YU , Wei SONG , Yang LIU , Yuxue DING , Fanhao MENG , Shuju WANG , Lixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Changqing MIAO , Fengjiao CHEN , Wenyu LI , Shujie WEI , Yuqing YAO , Keyi WANG , Ni WANG , Xiaoyan XIN , Ming FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192
Bao Jia , Yunzhe Ke , Shiyue Sun , Dongxue Yu , Ying Liu , Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158
Xuefei Leng , Yanshai Wang , Hai Wang , Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105
Jinghua Wang , Yanxin Yu , Yanbiao Ren , Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057
(a) The detail construction is to roll up the white area graphene sheet and overlap the corresponding two sets of lattice points. (b) Semiconducting SWNTs are white and metallic ones are shaded[2]. Reprinted with permission from Ref. [2]. Copyright 2008 American Chemical Society. (c) Reprinted with permission from Ref. [3]. Copyright 2011 Royal Society of Chemistry
(a) Reprinted with permission from Ref. [13]. Copyright 2002 the American Association for the Advancement of Science; (b) the inset shows the region of the S22 interband transition utilized for NIR purity evaluation. In the diagram, AA(S) area of the S22 spectral band after linear baseline correction and AA(T) total area of the S22 band including SWNT and carbonaceous impurity contributions. The NIR carbon tube relative purity is given by RP=(AA(S)/AA(T))/0.141[14]. Reprinted with permission from Ref. [14]. Copyright 2005 American Chemical Society
The black rectangle area is the typical absorption peak area of the metallic SWCNTs. Reprinted with permission from Ref. [16]. Copyright 2013 John Wiley and Sons
Reprinted with permission from Ref. [24]. Copyright 2004 American Chemical Society
Reprinted with permission from Ref. [34]. Copyright 2002 American Chemical Society
Reprinted with permission from Ref. [35]. Copyright 2009 American Chemical Society
Reprinted with permission from Ref. [10]. Copyright 2007 Springer Nature
In yellow the SWNTs selected are underlined; the color of the dots inside the hexagons indicates which of the polyfluorene derivatives (color code used for the chemical structures) is able to select the nanotubes. Reprinted with permission from Ref. [16]. Copyright 2013 John Wiley and Sons
Reprinted with permission from Ref. [39]. Copyright 2013 John Wiley and Sons
In (b) Red part represents fluorene unit, while blue rings are pyridine units[39]. Reprinted with permission from Ref. [39]. Copyright 2013 John Wiley and Sons
Reprinted with permission from Ref. [12]. Copyright 2011 American Chemical Society<
Reprinted with permission from Ref. [39]. Copyright 2014 Royal Society of Chemistry
Reprinted with permission from Ref. [47]. Copyright 2015 John Wiley and Sons
Reprinted with permission from Ref. [41]. Copyright 2014 Royal Society of Chemistry
Reprinted with permission from Ref. [11]. Copyright 2011 Springer Nature
(a) Reprinted with permission from Ref. [56]. Copyright 2015 Royal Society of Chemistry. (b) Reprinted with permission from Ref. [57]. Copyright 2015 Elsevier