Citation: Guo Zhenyan, Bai Jinhe, Liu Miao, Xiong Decai, Ye Xinshan. Advances in the Synthesis of C-Glycosides from Glycals[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3094-3111. doi: 10.6023/cjoc202006005 shu

Advances in the Synthesis of C-Glycosides from Glycals

  • Corresponding author: Xiong Decai, decai@bjmu.edu.cn Ye Xinshan, xinshan@bjmu.edu.cn
  • Received Date: 5 June 2020
    Revised Date: 2 July 2020
    Available Online: 22 July 2020

    Fund Project: Project supported by the National Key Research and Development Program of China (No. 2018YFA0507602), the National Natural Science Foundation of China (No. 21738001), and the National New Drug Innovation Major Project of China (No. 2019ZX09301106)the National New Drug Innovation Major Project of China 2019ZX09301106the National Key Research and Development Program of China 2018YFA0507602the National Natural Science Foundation of China 21738001

Figures(47)

  • C-Glycosides are a class of carbohydrates with a variety of biological activities, and the construction of their unique C-C glycosidic bond is a hot and challenging topic in carbohydrate chemistry. The formation of new C-C bond from carbon-carbon double bond is a common strategy in organic chemistry. With the rapid development of ene-chemistry, great progress in the synthesis of C-glycosides from glycal donors containing 1, 2-double bond has been made. In this review, the methods for the synthesis of C-glycosides based on glycals are summarized, including Ferrier Ⅰ-type C-glycosylation, Heck-type C-glycosylation, C-glycosylation of 1-substituted glycals using transition metal-catalyzed coupling reaction, Michael-type C-glycosylation of 2-substituted glycals, and radical addition type C-glycosylation of glycals.
  • 加载中
    1. [1]

      Štambaský, J.; Hocek, M.; Kočovský, P. Chem. Rev. 2009, 109, 6729.  doi: 10.1021/cr9002165

    2. [2]

      Cao, X.; Tian, Y.; Zhang, T.; Li, X.; Ito, Y. J. Chromatogr. A 1999, 855, 709.  doi: 10.1016/S0021-9673(99)00715-3

    3. [3]

      (a) Funahashi, Y.; Kawamura, N.; Ishimaru, T. JP 08231551, 1996.
      (b) Funahashi, Y.; Kawamura, N.; Ishimaru, T. JP 08231552, 1996.

    4. [4]

      Franck, R. W. Angew. Chem., Int. Ed. 2004, 43, 3818.  doi: 10.1002/anie.200454215

    5. [5]

      (a) Kitamura, K.; Ando, Y.; Matsumoto, T.; Suzuki, K. Chem. Rev. 2018, 118, 1495.
      (b) Yang, Y.; Yu, B. Chem. Rev. 2017, 117, 12281.

    6. [6]

      (a) Gómez, A. M.; Lobo, F.; Uriel, C.; López, J. C. Eur. J. Org. Chem. 2013, 7221.
      (b) Vieira, A. S.; Fiorante, P. F.; Hough, T. L. S.; Ferreira, F. P.; Ludtke, D. S.; Stefani, H. A. Org. Lett. 2008, 10, 5215.
      (c) Huang, N.; Liao, H.; Yao, H.; Xie, T.; Zhang, S.; Zou, K.; Liu, X. W. Org. Lett. 2018, 20, 16.

    7. [7]

      (a) Takhi, M.; Rahman, A. H. A.; Schmidt, R. R. Tetrahedron Lett. 2001, 42, 4053.
      (b) Anjaiah, S.; Chandrasekhar, S.; Grée, R. J. Mol. Catal. A: Chem. 2004, 214, 133.

    8. [8]

      (a) Saeeng, R.; Sirion, U.; Sahakitpichan, P.; Isobe, M. Tetrahedron Lett. 2003, 44, 6211.
      (b) Yadav, J. S.; Reddy, B. V. S.; Rao, C. V.; Chand, P. K.; Prasad, A. R. Synlett 2001, 1638.

    9. [9]

      Das, S. K.; Reddy, K. A.; Abbineni, C.; Roy, J.; Rao, K. V. L. N.; Sachwani, R. H.; Iqbal, J. Tetrahedron Lett. 2003, 44, 4507.  doi: 10.1016/S0040-4039(03)01012-8

    10. [10]

      Ansari, A. A.; Reddy, Y. S.; Vankar, Y. D. Beilstein J. Org. Chem. 2014, 10, 300.  doi: 10.3762/bjoc.10.27

    11. [11]

      Steinhuebel, D. P.; Fleming, J. J.; Bois, J. D. J. Org. Lett. 2002, 4, 293.  doi: 10.1021/ol010273e

    12. [12]

      Tatina, M. B.; Kusunuru, A. K.; Yousuf, S. K.; Mukherjee, D. Org Biomol. Chem. 2014, 12, 7900.  doi: 10.1039/C4OB01405G

    13. [13]

      (a) Di Bussolo, V.; Caselli, M.; Pineschi, M.; Crotti, P. Org. Lett. 2003, 5, 2173.
      (b) Bussolo, V. D.; Caselli, M.; Romano, M. R.; Pineschi, M.; Crotti, P. J. Org. Chem. 2004, 69, 7383.

    14. [14]

      Deelertpaiboon, P.; Reutrakul, V.; Jarussophon, S.; Tuchinda, P.; Kuhakarn, C.; Pohmakotr, M. Tetrahedron Lett. 2009, 50, 6233.  doi: 10.1016/j.tetlet.2009.09.036

    15. [15]

      Lubin-Germain, N.; Hallonet, A.; Huguenot, F.; Palmier, S.; Uziel, J.; Augé, J. Org. Lett. 2007, 9, 3679.  doi: 10.1021/ol701480x

    16. [16]

      Vieira, A. S.; Fiorante, P. F.; Hough, T. L.; Ferreira, F. P.; Lüdtke, D. S.; Stefani, H. A. Org. Lett. 2008, 10, 5215.  doi: 10.1021/ol8022177

    17. [17]

      Kusunuru, A. K.; Tatina, M.; Yousuf, S. K.; Mukherjee, D. Chem Commun. 2013, 49, 10154.  doi: 10.1039/c3cc44250k

    18. [18]

      Hosseyni, S.; Smith, C. A.; Shi, X. Org. Lett. 2016, 18, 6336.  doi: 10.1021/acs.orglett.6b03228

    19. [19]

      Devari, S.; Kumar, M.; Deshidi, R.; Rizvi, M.; Shah, B. A. Beilstein J. Org. Chem. 2014, 10, 2649.  doi: 10.3762/bjoc.10.277

    20. [20]

      Chen, H.; Luo, X.; Qiu, S.; Sun, W.; Zhang, J. Glycoconjugate J. 2017, 34, 13.  doi: 10.1007/s10719-016-9718-7

    21. [21]

      Tan, H. Y.; Xiang, S.; Leng, W. L.; Liu, X.-W. RSC Adv. 2014, 4, 34816.  doi: 10.1039/C4RA07429G

    22. [22]

      Dash, A. K.; Madhubabu, T.; Yousuf, S. K.; Raina, S.; Mukherjee, D. Carbohydr. Res. 2017, 438, 1.  doi: 10.1016/j.carres.2016.11.018

    23. [23]

      Yadav, J. S.; Reddy, B. V. S.; Rao, K. V.; Saritha Raj, K.; Prasad, A. R.; Kiran Kumar, S.; Kunwar, A. C.; Jayaprakash, P.; Jagannath, B. Angew. Chem. Int. Ed. 2003, 115, 5356.  doi: 10.1002/ange.200351267

    24. [24]

      Reddy, G. M.; Maheswara Rao, B. U.; Sridhar, P. R. J. Org. Chem. 2016, 81, 2782.  doi: 10.1021/acs.joc.5b02879

    25. [25]

      (a) Moineau, C.; Bolitt, V.; Sinou, D. J. Org. Chem. 1998, 63, 582.
      (b) Bertini, B.; Moineau, C.; Sinou, D.; Gesekus, G.; Vill, V. Eur. J. Org. Chem. 2001, 2001, 375.
      (c) Zeng, J.; Ma, J.; Xiang, S.; Cai, S.; Liu, X.-W. Angew. Chem. Int. Ed. 2013, 125, 5238.
      (d) Bai, Y.; Leng, W. L.; Li, Y.; Liu, X.-W. Chem. Commun. 2014, 50, 13391.
      (e) Leng, W.-L.; Liao, H.; Yao, H.; Ang, Z.-E.; Xiang, S.; Liu, X.-W. Org. Lett. 2017, 19, 416.

    26. [26]

      Dai, Y.; Tian, B.; Chen, H.; Zhang, Q. ACS Catal. 2019, 9, 2909.  doi: 10.1021/acscatal.9b00336

    27. [27]

      Heck, R. F. J. Am. Chem. Soc. 1968, 90, 5518.  doi: 10.1021/ja01022a034

    28. [28]

      Arai, I.; Daves, G. D. J. Org. Chem. 1979, 44, 21.  doi: 10.1021/jo01315a005

    29. [29]

      Farr, R. N.; Outten, R. A.; Cheng, J. C.-Y.; Daves, G. D., Jr. Organometallics 1990, 9, 3151.  doi: 10.1021/om00162a029

    30. [30]

      Zhang, H.; Daves, G. D., Jr. J. Org. Chem. 1992, 57, 4690.  doi: 10.1021/jo00043a029

    31. [31]

      Li, H.-H.; Ye, X.-S. Org. Biomol. Chem. 2009, 7, 3855.  doi: 10.1039/b909248j

    32. [32]

      Lei, M.; Gao, L.; Yang, J.-S. Tetrahedron Lett. 2009, 50, 5135.  doi: 10.1016/j.tetlet.2009.06.116

    33. [33]

      Jovanovic, P.; Petkovic, M.; Simic, M.; Jovanovic, M.; Tasic, G.; Crnogorac, M. D.; Zizak, Z.; Savic, V. Eur. J. Org. Chem. 2019, 2019, 4701.  doi: 10.1002/ejoc.201900672

    34. [34]

      Tao, Y.; Ding, N.; Ren, S.; Li, Y. Tetrahedron Lett. 2013, 54, 6101.  doi: 10.1016/j.tetlet.2013.08.118

    35. [35]

      (a) Rammauth, J.; Poulin, O.; Rakhit, S.; Maddaford, S. P. Org. Lett. 2001, 3, 2013.
      (b) Ramnauth, J.; Poulin, O.; Bratovanov, S. S.; Rakhit, S.; Maddaford, S. P. Org. Lett. 2001, 3, 2571.

    36. [36]

      Figuera, N.; Forns, P.; Fernandez, J. C.; Fiol, S.; Fernandez-Forner, D.; Albericia, F. Tetrahedron Lett. 2005, 46, 7271.  doi: 10.1016/j.tetlet.2005.07.128

    37. [37]

      Lai, M.; Othman, K. A.; Yao, H.; Wang, Q.; Feng, Y.; Huang, N.; Liu, M.; Zou, K. Org. Lett. 2020, 22, 1144.  doi: 10.1021/acs.orglett.9b04665

    38. [38]

      Xiong, D.-C.; Zhang, L.-H.; Ye, X.-S. Org. Lett. 2009, 11, 1709.  doi: 10.1021/ol900273d

    39. [39]

      Mabit, T.; Siard, A.; Legros, F.; Guillarme, S.; Martel, A.; Lebreton, J.; Carreaux, F.; Dujardin, G.; Collet, S. Chem.-Eur. J. 2018, 24, 14069.  doi: 10.1002/chem.201803674

    40. [40]

      Yoshikawa, Y.; Ishibashi, A.; Murai, K.; Kaneda, Y.; Nimura, K.; Arisawa, M. Tetrahedron Lett. 2019, 60, 151313.  doi: 10.1016/j.tetlet.2019.151313

    41. [41]

      Liu, C.-F.; Xiong, D.-C.; Ye, X.-S. J. Org. Chem. 2014, 79, 4676.  doi: 10.1021/jo500730y

    42. [42]

      Kusunuru, A. K.; Jaladanki, C. K.; Tatina, M. B.; Bharatam, P. V.; Mukherjee, D. Org. Lett. 2015, 17, 3742.  doi: 10.1021/acs.orglett.5b01722

    43. [43]

      Bai, Y.; Kim, L. M. H.; Liao, H.; Liu, X.-W. J. Org. Chem. 2013, 78, 8821.  doi: 10.1021/jo401032r

    44. [44]

      (a) Tang, S.; Zheng, Q.; Xiong, D.-C.; Jiang, S.; Li, Q.; Ye, X.-S. Org. Lett. 2018, 20, 3079.
      (b) Xiong, D.-C.; Gao, C.; Li, W.-M.; Wang, Y.; Li, Q.; Ye, X.-S. Org. Chem. Front. 2014, 1, 798.
      (c) Liu, M.; Li, B.-H.; Li, T.; Liu, M.; Xiong, D.-C.; Ye, X.-S. Org. Biomol. Chem. 2020, 18, 3043.
      (d) Zheng, Q.; Tang, S.; Xiong, D.-C.; Li, Q.; Ye, X.-S. J. Org. Chem. 2020, 85, 9339.

    45. [45]

      (a) Singh, A. K.; Kandasamy, J. Org. Biomol. Chem. 2018, 16, 5107.
      (b) Singh, A. K.; Venkatesh, R.; Kandasamy, J. Synthesis 2019, 51, 4215.

    46. [46]

      Xiang, S.; Cai, S.; Zeng, S.; Liu, X.-W. Org. Lett. 2011, 13, 4608.  doi: 10.1021/ol201820m

    47. [47]

      Kusunuru, A. K.; Yousuf, S. K.; Tatina, M.; Mukherjee, D. Eur. J. Org. Chem. 2015, 2015, 459.  doi: 10.1002/ejoc.201403195

    48. [48]

      Sakamoto K.; Nagai M.; Ebe Y.; Yorimitsu H.; Nishimura k. ACS Catal. 2019, 9, 1347.  doi: 10.1021/acscatal.8b04686

    49. [49]

      Kikuchi, T.; Takagi, J.; Isou, H.; Ishiyama, T.; Miyaura, N. Chem. Asian J. 2008, 3, 2082.  doi: 10.1002/asia.200800157

    50. [50]

      Parkan, K.; Pohl, R.; Kotora, M. Chem.-Eur. J. 2014, 20, 4414.  doi: 10.1002/chem.201304304

    51. [51]

      Oroszova, B.; Choutka, J.; Pohl, R.; Parkan, K. Chem.-Eur. J. 2015, 21, 7043.  doi: 10.1002/chem.201406591

    52. [52]

      Gong, L.; Sun, H.-B.; Deng, L.-F.; Zhang, X.; Liu, J.; Yang, S.; Niu, D. J. Am. Chem. Soc. 2019, 141, 7680.  doi: 10.1021/jacs.9b02312

    53. [53]

      Dubbaka, S. R.; Steunenberg, P.; Vogel, P. Synlett 2004, 1235.

    54. [54]

      Koo, B.; E. McDonald, F. Org. Lett. 2005, 7, 3621.  doi: 10.1021/ol050975u

    55. [55]

      Hartung, J.; Wright, B. J. D.; Danishefsky, S. J. Chem.-Eur. J. 2014, 20, 8731.  doi: 10.1002/chem.201402254

    56. [56]

      Koester, D. C.; Kriemen, E.; Werz, D. B. Angew. Chem. Int. Ed. 2013, 52, 2985.  doi: 10.1002/anie.201209697

    57. [57]

      Potuzak, J. S.; Tan, D. S. Tetrahedron Lett. 2004, 45, 1797.  doi: 10.1016/j.tetlet.2003.12.006

    58. [58]

      (a) Liu, M.; Niu, Y.-H.; Wu, Y.-F.; Ye, X.-S. Org. Lett. 2016, 18, 1836.
      (b) Wang, H.; Niu, Y.-H.; Zhang, G.; Ye, X.-S. Tetrahedron Lett. 2016, 57, 4544.

    59. [59]

      Zhang, S.; Niu, Y.-H.; Ye, X.-S. Org. Lett. 2017, 19, 3608.  doi: 10.1021/acs.orglett.7b01583

    60. [60]

      Liu, Y.; Wang, Y.; Dai, W.; Huang, W.; Li, Y.; Liu, H. Angew. Chem. Int. Ed. 2020, 59, 3491.  doi: 10.1002/anie.201914184

    61. [61]

      Wu, J.; Kaplaneris, N.; Ni, S.; Kaltenhauser, F.; Ackermann, L. Chem. Sci. 2020, 11, 6521.  doi: 10.1039/D0SC01260B

    62. [62]

      Boucard, V.; Larrieu, K.; Lubingermain, N.; Uziel, J.; Augé, J. Synlett 2003, 1834.

    63. [63]

      Marjolein, V. D. K.; Eefjan, B.; Pieters, R. Beilstein J. Org. Chem. 2012, 8, 732.  doi: 10.3762/bjoc.8.82

    64. [64]

      Parker, K. A.; Koh, Y. H. J. Am. Chem. Soc. 1994, 116, 11149.  doi: 10.1021/ja00103a037

    65. [65]

      Yasuhito, K.; Ryo, Y.; Keisuke, S. Angew. Chem. Int. Ed. 2008, 120, 1100.  doi: 10.1002/ange.200704625

    66. [66]

      Holzapfel, C. W.; Merwe, T. L. V. D. Tetrahedron Lett. 1996, 37, 2307.  doi: 10.1016/0040-4039(96)00250-X

    67. [67]

      Pachamuthu, K.; Gupta, A.; Das, J.; Schmidt, R. R.; Vankar, Y. D. Eur. J. Org. Chem. 2002, 1479.

    68. [68]

      Reddy, B. G.; Vankar, Y. D. Angew. Chem. Int. Ed. 2005, 44, 2001.  doi: 10.1002/anie.200462413

    69. [69]

      Jayakanthan, K.; Vankar, Y. D. Tetrahedron Lett. 2006, 47, 8667.  doi: 10.1016/j.tetlet.2006.10.024

    70. [70]

      Zhang, T.; Yu, C.-Y.; Huang, Z.-T.; Jia, Y.-M. Synlett 2010, 2174.

    71. [71]

      Vedachalam, S.; Shi, M. T.; Hui, P. T.; Cai, S.; Liu, X.-W. Org. Lett. 2012, 14, 174.  doi: 10.1021/ol202959y

    72. [72]

      (a) Delaunay, S.; Poisson, T.; Jubault, P.; Pannecoucke, X. Eur. J. Org. Chem. 2014, 3341.
      (b) Verma, A. K.; Chennaiah, A.; Dubbu, S.; Vankar, Y. D. Carbohydr. Res. 2019, 473, 57

    73. [73]

      Delaunay, T.; Poisson, T.; Jubault, P.; Pannecoucke, X. J. Fluorine. Chem. 2015, 171, 56.  doi: 10.1016/j.jfluchem.2014.10.001

    74. [74]

      Bouwman, S.; Orru, R. V. A.; Ruijter, E. Org. Biomol. Chem. 2015, 13, 1317.  doi: 10.1039/C4OB02317J

    75. [75]

      (a) Lopez, J. C.; Fraser-Reid, B. J. Am. Chem. Soc. 1989, 111, 3450.
      (b) Gomez, A. M.; Casillas, M.; Valverde, S.; Lopez, J. C. Tetrahedron: Asymmetry 2001, 12, 2175.
      (c) Li, G.; Xiong, D.-C.; Ye, X.-S. Synlett 2001, 2410.

    76. [76]

      (a) Moreno, B.; Quehen, C.; Rose-Helene, M.; Leclerc, E.; Quirion, J.-C. Org. Lett. 2007, 9, 2477.
      (b) Colombel, S.; Van Hijfte, N.; Poisson, T.; Leclerc, E.; Pannecoucke, X. Chem.-Eur. J. 2013, 19, 12778.

    77. [77]

      (a) Lo, J. C.; Gui, J.; Yabe, Y.; Pan, C.-M.; Baran, P. S. Nature 2014, 516, 343.
      (b) Lo, J. C.; Kim, D.; Pan, C.-M.; Edwards, J. T.; Yabe, Y.; Gui, J.; Qin, T.; Gutiérrez, S.; Giacoboni, J.; Smith, M. W.; Holland, P. L.; Baran, P. S. J. Am. Chem. Soc. 2017, 139, 2484.

  • 加载中
    1. [1]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    2. [2]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    3. [3]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    4. [4]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    5. [5]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    6. [6]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    7. [7]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    8. [8]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    9. [9]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    10. [10]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    11. [11]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    12. [12]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    15. [15]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    16. [16]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    17. [17]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    18. [18]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    19. [19]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    20. [20]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

Metrics
  • PDF Downloads(69)
  • Abstract views(2526)
  • HTML views(644)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return