Citation: Yue Guizhou, Liu Bo. Research Progress on [3+n] (n≥3) Cycloaddition of 1, 3-Diploes[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3132-3153. doi: 10.6023/cjoc202005092 shu

Research Progress on [3+n] (n≥3) Cycloaddition of 1, 3-Diploes

  • Corresponding author: Yue Guizhou, yueguizhou@sicau.edu.cn Liu Bo, chembliu@scu.edu.cn
  • Received Date: 30 May 2020
    Revised Date: 19 June 2020
    Available Online: 30 June 2020

    Fund Project: Project supported by the Science and Technology Program of Sichuan Province (No. 2020YFH0129)Science and Technology Program of Sichuan Province 2020YFH0129

Figures(1)

  • Versatile heterocyclic skeletons extensively exist in structures of natural products, drug molecules and organic materials, and have been synthesized through various strategies reported in literatures. Among them, the 1, 3-dipolar cycloaddition is the most impressive class to build the related heterocycles. In the past, organic chemists generally employed[3+2] cycloaddition of 1, 3-dipoles to assemble five-membered rings. As modern chemistry developes, researchers further turn their attention to the[3+3], [3+4], [3+5] and[3+6] cycloadditions, to construct six-, seven-, eight- and bridge-heterocyclic compounds. At present, review articles with topics on 1, 3-dipolar cycloaddition mainly focus on[3+2] cycloaddition. Herein, A topic on[3+n] (n ≥ 3) cycloaddition of 1, 3-dipoles, with comments on the developed methodologies is present and the outlook in this field is proposed.
  • 加载中
    1. [1]

      Seeman, J. I.; Restrepo, G. Angew. Chem. Int. Ed. 2020, 59, 12250.  doi: 10.1002/anie.202003034

    2. [2]

      Huisgen, P. D. R. Angew. Chem. Int. Ed. 1963, 2, 565.  doi: 10.1002/anie.196305651

    3. [3]

      Delpierre, G.; Lamchen, M. Quart. Rev. Chem. Soc. 1965, 19, 329.  doi: 10.1039/qr9651900329

    4. [4]

      Stuckwisch, C. G. Synthesis 1973, 469.

    5. [5]

      Timpe, H.-J. Heteroaromatic N-Imines. In Advances in Heterocyclic Chemistry, Eds:Katritzky, A. R.; Boulton, A. J., Academic Press, Pittsburgh, 1974; Vol. 17, p. 213.

    6. [6]

      Black, D. S. C.; Crozier, R. F.; Davis, V. C. Synthesis 1975, 205.

    7. [7]

      Tamura, Y.; Ikeda, M. Advances in the Chemistry of Heteroaromatic N-Imines and N-Aminoazonium Salts. In Advances in Heterocyclic Chemistry, Eds.:Katritzky, A. R.; Boulton, A. J., Academic Press, Pittsburgh, 1981; Vol. 29, p. 71.

    8. [8]

      Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863.  doi: 10.1021/cr970324e

    9. [9]

      Rodina, L. L.; Kolberg, A.; Schulze, B. Heterocycles 1998, 49, 587.  doi: 10.3987/REV-98-SR4

    10. [10]

      Zhao B.-X. Prog. Chem. 2000, 12, 77(in Chinese).

    11. [11]

      Xu J.-X.; Jiao P. Prog. Chem. 2000, 12, 131(in Chinese).

    12. [12]

      Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed. 2001, 40, 2004.  doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5

    13. [13]

      Kotyatkina, A. I.; Zhabinsky, V N.; Khripach, V. A. Russ. Chem. Rev. 2001, 70, 641.  doi: 10.1070/RC2001v070n08ABEH000630

    14. [14]

      Osborn, H. M. I.; Gemmell, N.; Harwood, L. M. J. Chem. Soc., Perkin Trans. 12002, 2419.

    15. [15]

      Padwa A.; Pearson W. H. The Chemistry of Heterocyclic Compounds: Synthetic Applications of 1, 3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products, Vol. 59, John Wiley & Sons, New York, 2002.

    16. [16]

      Schantl, J. G. Sci. Synth. 2004, 27, 731.

    17. [17]

      Harju, K.; Yli-Kauhaluoma, J. Mol. Div. 2005, 9, 187.  doi: 10.1007/s11030-005-1339-1

    18. [18]

      Rück-Braun, K.; Freysoldt, T. H. E.; Wierschem, F. Chem. Soc. Rev. 2005, 34, 507.  doi: 10.1039/b311200b

    19. [19]

      Coldham, I.; Hufton, R. Chem. Rev. 2005, 105, 2765.  doi: 10.1021/cr040004c

    20. [20]

      Hu, X.-F.; Feng, Y.-Q.; Li, X.-F. Chin. J. Org. Chem. 2005, 25, 1(in Chinese).
       

    21. [21]

      Pinho e Melo, T. M. V. D. Eur. J. Org. Chem. 2006, 2006, 2873.  doi: 10.1002/ejoc.200500892

    22. [22]

      Pandey, G.; Banerjee, P.; Gadre, S. R. Chem. Rev. 2006, 106, 4484.  doi: 10.1021/cr050011g

    23. [23]

      Wang, F.; Bai D.-L. Chin. J. Org. Chem. 2006, 26, 9(in Chinese).
       

    24. [24]

      Moses, J. E.; Moorhouse, A. D. Chem. Soc. Rev. 2007, 36, 1249.  doi: 10.1039/B613014N

    25. [25]

      Nair, V.; Suja, T. D. Tetrahedron 2007, 63, 12247.  doi: 10.1016/j.tet.2007.09.065

    26. [26]

      Stanley, L. M.; Sibi, M. P. Chem. Rev. 2008, 108, 2887.  doi: 10.1021/cr078371m

    27. [27]

      Jewett, J. C.; Bertozzi, C. R. Chem. Soc. Rev. 2010, 39, 1272.  doi: 10.1039/b901970g

    28. [28]

      Adrio, J.; Carretero, J. C. Chem. Commun. 2011, 47, 6784.  doi: 10.1039/c1cc10779h

    29. [29]

      Yang, J. Synlett 2012, 2293.

    30. [30]

      Lashgari, N.; Ziarani, G. M. ARKIVOC 2012, i, 277.

    31. [31]

      Tanimoto, H.; Kakiuchi, K. Nat. Prod. Commun. 2013, 8, 1021.

    32. [32]

      Xu, X.; Doyle, M. P. Acc. Chem. Res. 2014, 47, 1396.  doi: 10.1021/ar5000055

    33. [33]

      Han, Q.; Yi, C.; Xiong, X., Chin. J. Org. Chem. 2014, 34, 1092(in Chinese).
       

    34. [34]

      Hashimoto, T.; Maruoka, K. Chem. Rev. 2015, 115, 5366.  doi: 10.1021/cr5007182

    35. [35]

      Najera, C.; Sansano, J. M.; Yus, M. Org. Biomol. Chem. 2015, 13, 8596.  doi: 10.1039/C5OB01086A

    36. [36]

      Padwa, A.; Bur, S. Recent Advances of 1, 3-Dipolar Cycloaddition Chemistry for Alkaloid Synthesis. In Advances in Heterocyclic Chemistry, Eds.:Scriven, E. F. V.; Ramsden C. A., Academic Press, Pittsburgh, 2016, Vol. 119, p. 241.

    37. [37]

      Sears, J. E.; Boger, D. L. Acc. Chem. Res. 2016, 49, 241.  doi: 10.1021/acs.accounts.5b00510

    38. [38]

      Meyer, A. G.; Ryan, J. H. Molecules 2016, 21, 935.  doi: 10.3390/molecules21080935

    39. [39]

      Belskaya, N. P.; Bakulev, V. A.; Fan, Z. Chem. Heterocycl. Compd. 2016, 52, 627.  doi: 10.1007/s10593-016-1943-2

    40. [40]

      Yuan, B.-B.; Li, Y.-M.; Wang, Q.-L.; Bu, Z.-W. Chem. Res. 2017, 28, 135(in Chinese).

    41. [41]

      Pozgan, F.; Al Mamari, H.; Groselj, U.; Svete, J.; Stefane, B. Molecules 2017, 23, 3.  doi: 10.3390/molecules23010003

    42. [42]

      Xuan, J.; Cao, X.; Cheng, X. Chem. Commun. 2018, 54, 5154.  doi: 10.1039/C8CC00787J

    43. [43]

      Li, J.; Ye, Y.; Zhang, Y. Org. Chem. Front. 2018, 5, 864.  doi: 10.1039/C7QO01077J

    44. [44]

      Arrastia, I.; Arrieta, A.; Cossío, F. P. Eur. J. Org. Chem. 2018, 5889.

    45. [45]

      Grošelj, U.; Svete, J.; Mamari, H. H. A.; Požgan, F.; Štefane, B. Chem. Heterocycl. Compd. 2018, 54, 214.  doi: 10.1007/s10593-018-2258-2

    46. [46]

      Grošelj, U.; Požgan, F.; Štefane, B.; Svete, J. Synthesis 2018, 4501.

    47. [47]

      Frankowski, S.; Romaniszyn, M.; Skrzynska, A.; Albrecht, L. Chemistry 2019.

    48. [48]

      Gulevskaya, A. V.; Nelina-Nemtseva, J. I. Chem. Heterocycl. Compd. 2019, 54, 1084.

    49. [49]

      Gao, K.; Zhang, Y. G.; Wang, Z.; Ding, H. Chem. Commun. 2019, 55, 1859.  doi: 10.1039/C8CC09077G

    50. [50]

      Sukhorukov, A. Adv. Synth. Catal. 2019, 362, 724.

    51. [51]

      Nebra, N.; García-Álvarez, J. Molecules 2020, 25, 2015.  doi: 10.3390/molecules25092015

    52. [52]

      Zhu, Y.; Huang, Y. Synthesis 2020, 1181.

    53. [53]

      Brunel, D.; Dumur, F. New J. Chem. 2020, 44, 3546.  doi: 10.1039/C9NJ06330G

    54. [54]

      Gui, H.-Z.; Wei, Y.; Shi, M. Chem. Asian J. 2020, 15, 1225.  doi: 10.1002/asia.202000054

    55. [55]

      Dhameja, M.; Kumar, H.; Gupta, P. Asian J. Org. Chem. 2020, in press.

    56. [56]

      Breugest, M.; Reissig, H. U. Angew. Chem. Int. Ed. 2020, 59, 12293.  doi: 10.1002/anie.202003115

    57. [57]

      Wei, L.; Chang, X.; Wang, C.-J. Acc. Chem. Res. 2020, 53, 1084.  doi: 10.1021/acs.accounts.0c00113

    58. [58]

      Mori, M.; Sugiyama, T.; Nojima, M.; Kusabayashi, S.; Mc- Cullough, K. J. J. Org. Chem. 1992, 57, 2285.  doi: 10.1021/jo00034a018

    59. [59]

      Schneider, T. F.; Kaschel, J.; Werz, D. B. Angew. Chem. Int. Ed. 2014, 53, 5504.  doi: 10.1002/anie.201309886

    60. [60]

      Singh, P.; Varshnaya, R. K.; Dey, R.; Banerjee, P. Adv. Syn. Catal. 2020, 362, 1447.  doi: 10.1002/adsc.201901332

    61. [61]

      Werz, D. B.; Biju, A. T. Angew. Chem. Int. Ed. 2020, 59, 3385.  doi: 10.1002/anie.201909213

    62. [62]

      Ivanova, O. A.; Trushkov, I. V. Chem. Rec. 2020, 19, 2189.

    63. [63]

      Wu, L.; Shi, M. Chem. Eur. J. 2010, 16, 1149.  doi: 10.1002/chem.200902510

    64. [64]

      Yang, W.; Wang, T.; Yu, Y.; Shi, S.; Zhang, T.; Hashmi, A. S. K. Adv. Syn. Catal. 2013, 355, 1523.  doi: 10.1002/adsc.201300338

    65. [65]

      El Bouakher, A.; Martel, A.; Comesse, S. Org. Biomol. Chem. 2019, 17, 8467.  doi: 10.1039/C9OB01683J

    66. [66]

      An, Y.; Xia, H.; Wu, J. Chem. Commun. 2016, 52, 10415.  doi: 10.1039/C6CC03650C

    67. [67]

      Zhao, H.-W.; Zhao, Y.-D.; Liu, Y.-Y.; Zhao, L.-J.; Song, X.-Q.; Chen, X.-Q.; Pang, H.-L.; Du, J.; Feng, N.-N. RSC Adv. 2017, 7, 55106.  doi: 10.1039/C7RA09766B

    68. [68]

      Jia, Q.; Li, D.; Lang, M.; Zhang, K.; Wang, J. Adv. Syn. Catal. 2017, 359, 3837.  doi: 10.1002/adsc.201700415

    69. [69]

      Luo, Y.; Chen, C.-H.; Zhang, J.-Q.; Liang, C.; Mo, D.-L. Synthesis 2019, 52, 424.

    70. [70]

      Sibi, M. P.; Ma, Z.; Jasperse, C. P. J. Am. Chem. Soc. 2005, 127, 5764.  doi: 10.1021/ja0421497

    71. [71]

      Sapeta, K.; Kerr, M. A. J. Org. Chem. 2007, 72, 8597.  doi: 10.1021/jo701606u

    72. [72]

      Wang, X.; Xu, X.; Zavalij, P. Y.; Doyle, M. P. J. Am. Chem. Soc. 2011, 133, 16402.  doi: 10.1021/ja207664r

    73. [73]

      Xu, X.; Zavalij, P. J.; Doyle, M. P. Chem. Commun. 2013, 49, 10287.  doi: 10.1039/c3cc46415f

    74. [74]

      Shintani, R.; Park, S.; Duan, W. L.; Hayashi, T. Angew. Chem. Int. Ed. 2007, 46, 5901.  doi: 10.1002/anie.200701529

    75. [75]

      Liu, F.; Qian, D.; Li, L.; Zhao, X.; Zhang, J. Angew. Chem. Int. Ed. 2010, 49, 6669.  doi: 10.1002/anie.201003136

    76. [76]

      Zhou, L.; Xu, B.; Ji, D.; Zhang, Z. M.; Zhang, J. Chin. J. Chem. 2020, in press.

    77. [77]

      Xu, P. W.; Liu, J. K.; Shen, L.; Cao, Z. Y.; Zhao, X. L.; Yan, J.; Zhou, J. Nat. Commun. 2017, 8, 1619.  doi: 10.1038/s41467-017-01451-1

    78. [78]

      Bai, Y.; Fang, J.; Ren, J.; Wang, Z. Chem. Eur. J. 2009, 15, 8975.  doi: 10.1002/chem.200901133

    79. [79]

      Stevens, A. C.; Palmer, C.; Pagenkopf, B. L. Org. Lett. 2011, 13, 1528.  doi: 10.1021/ol200220d

    80. [80]

      Zhang, Y.; Zhang, J. Chem. Commun. 2012, 48, 4710.  doi: 10.1039/c2cc30309d

    81. [81]

      Hu, J.-L.; Wang, L.; Xu, H.; Xie, Z.; Tang, Y. Org. Lett. 2015, 17, 2680.  doi: 10.1021/acs.orglett.5b01077

    82. [82]

      Shintani, R.; Murakami, M.; Hayashi, T. J. Am. Chem. Soc. 2007, 129, 12356.  doi: 10.1021/ja073997f

    83. [83]

      Shintani, R.; Murakami, M.; Hayashi, T. Pure Appl. Chem. 2008, 80, 1135.  doi: 10.1351/pac200880051135

    84. [84]

      Gawade, S. A.; Bhunia, S.; Liu, R. S. Angew. Chem. Int. Ed. 2012, 51, 7835.  doi: 10.1002/anie.201203507

    85. [85]

      Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2006, 128, 6330.  doi: 10.1021/ja061662c

    86. [86]

      Li, S.-N.; Yu, B.; Liu, J.; Li, H.-L.; Na, R. Synlett 2016, 27, 282.

    87. [87]

      Wang, K.-K.; Li, Y.-L.; Wang, Z.-Y.; Hu, M.-W.; Qiu, T.-T.; Zhu, B.-K. Org. Biomol. Chem. 2018, 17, 244.

    88. [88]

      Perreault, C.; Goudreau, S. R.; Zimmer, L. E.; Charette, A. B. Org. Lett. 2008, 10, 689.  doi: 10.1021/ol702414e

    89. [89]

      Chagarovskiy, A. O.; Vasin, V. S.; Kuznetsov, V. V.; Ivanova, O. A.; Rybakov, V. B.; Shumsky, A. N.; Makhova, N. N.; Trushkov, I. V. Angew. Chem. Int. Ed. 2018, 57, 10338.  doi: 10.1002/anie.201805258

    90. [90]

      Chagarovskiy, A. O.; Kuznetsov, V. V.; Ivanova, O. A.; Goloveshkin, A. S.; Levina, I. I.; Makhova, N. N.; Trushkov, I. V. Eur. J. Org. Chem. 2019, 2019, 5475.  doi: 10.1002/ejoc.201900579

    91. [91]

      Na, R.; Jing, C.; Xu, Q.; Jiang, H.; Wu, X.; Shi, J.; Zhong, J.; Wang, M.; Benitez, D.; Tkatchouk, E.; Goddard, W. A.; Guo, H.; Kwon, O. J. Am. Chem. Soc. 2011, 133, 13337.  doi: 10.1021/ja200231v

    92. [92]

      Liang, L.; Huang, Y. Org. Lett. 2016, 18, 2604.  doi: 10.1021/acs.orglett.6b00988

    93. [93]

      Li, Y.; Zhang, Z. New J. Chem. 2019, 43, 13600.  doi: 10.1039/C9NJ01943J

    94. [94]

      Liu, J.; Liu, H.; Na, R.; Wang, G.; Li, Z.; Yu, H.; Wang, M.; Zhong, J.; Guo, H. Chem. Lett. 2012, 41, 218.  doi: 10.1246/cl.2012.218

    95. [95]

      Li, Z.; Yu, H.; Liu, Y.; Zhou, L.; Sun, Z.; Guo, H. Adv. Synth. Catal. 2016, 358, 1880.  doi: 10.1002/adsc.201600223

    96. [96]

      Qian, Y.; Zavalij, P. J.; Hu, W.; Doyle, M. P. Org. Lett. 2013, 15, 1564.  doi: 10.1021/ol400339c

    97. [97]

      Cheng, X.; Cao, X.; Xuan, J.; Xiao, W.-J. Org. Lett. 2018, 20, 52.  doi: 10.1021/acs.orglett.7b03344

    98. [98]

      Ansari, A. J.; Pathare, R. S.; Kumawat, A.; Maurya, A. K.; Verma, S.; Agnihotri, V. K.; Joshi, R.; Metre, R. K.; Sharon, A.; Pardasani, R. T.; Sawant, D. M. New J. Chem. 2019, 43, 13721.  doi: 10.1039/C9NJ02874A

    99. [99]

      Zhu, G.; Sun, W.; Wu, C.; Li, G.; Hong, L.; Wang, R. Org. Lett. 2013, 15, 4988.  doi: 10.1021/ol402295m

    100. [100]

      Fang, X.; Li, J.; Tao, H.-Y.; Wang, C.-J. Org. Lett. 2013, 15, 5554.  doi: 10.1021/ol402724h

    101. [101]

      Du, J.; Xu, X.; Li, Y.; Pan, L.; Liu, Q. Org. Lett. 2014, 16, 4004.  doi: 10.1021/ol501829k

    102. [102]

      Shapiro, N. D.; Shi, Y.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 11654.  doi: 10.1021/ja903863b

    103. [103]

      Chan, A.; Scheidt, K. A. J. Am. Chem. Soc. 2007, 129, 5334.  doi: 10.1021/ja0709167

    104. [104]

      Efremova, M. M.; Kostikov, R. R.; Stepakov, A. V.; Panikorovsky, T. L.; Shcherbakova, V. S.; Ivanov, A. V.; Molchanov, A. P. Tetrahedron 2017, 73, 671.  doi: 10.1016/j.tet.2016.12.034

    105. [105]

      T. P.; Krishna, A. V.; Ramachary, D. B. Org. Lett. 2018, 20, 6979.  doi: 10.1021/acs.orglett.8b02719

    106. [106]

      Fang, Q-Y.; Jin, H-S.; Wang, R-B.; Zhao, L-M. Chem. Commun. 2019, 55, 10587.  doi: 10.1039/C9CC05367K

    107. [107]

      Liu, Y.; Zhen, W.; Dai, W.; Wang, F.; Li, X. Org. Lett. 2013, 15, 874.  doi: 10.1021/ol4000108

    108. [108]

      Moghaddam, F. M.; Eslami, M.; Siahpoosh, A.; Golfam, H. New J. Chem. 2019, 42, 10318.

    109. [109]

      Wang, X.; Yang, P.; Zhang, Y.; Tang, C.-Z.; Tian, F.; Peng, L.; Wang, L.-X. Org. Lett. 2017, 19, 646.  doi: 10.1021/acs.orglett.6b03815

    110. [110]

      Hu, S.; Zhang, J.; Jin, Q. New J. Chem. 2018, 42, 7025.  doi: 10.1039/C8NJ00234G

    111. [111]

      Zhou, Y. Y.; Li, J.; Ling, L.; Liao, S. H.; Sun, X. L.; Li, Y. X.; Wang, L. J.; Tang, Y. Angew. Chem. Int. Ed. 2013, 52, 1452.  doi: 10.1002/anie.201207576

    112. [112]

      Guo, H.; Liu, H.; Zhu, F.-L.; Na, R.; Jiang, H.; Wu, Y.; Zhang, L.; Li, Z.; Yu, H.; Wang, B.; Xiao, Y.; Hu, X.-P.; Wang, M. Angew. Chem. Int. Ed. 2013, 52, 12641.  doi: 10.1002/anie.201307317

    113. [113]

      Zhang, L.; Liu, H.; Qiao, G.; Hou, Z.; Liu, Y.; Xiao, Y.; Guo, H. J. Am. Chem. Soc. 2015, 137, 4316.  doi: 10.1021/jacs.5b01138

    114. [114]

      Du, Q.; Neudoerfl, J.-M.; Schmalz, H.-G. Chem. Eur. J. 2018, 24, 2379.  doi: 10.1002/chem.201800042

    115. [115]

      Xu, X.; Xu, X.; Zavalij, P. Y.; Doyle, M. P. Chem. Commun. 2013, 49, 2762.  doi: 10.1039/c3cc41119b

    116. [116]

      Jing, C.; Na, R.; Wang, B.; Liu, H.; Zhang, L.; Liu, J.; Wang, M.; Zhong, J.; Kwon, O.; Guo, H. Adv. Synth. Catal. 2012, 354, 1023.  doi: 10.1002/adsc.201100831

    117. [117]

      Li, Z.; Yu, H.; Feng, Y.; Hou, Z.; Zhang, L.; Yang, W.; Wu, Y.; Xiao, Y.; Guo, H. RSC Adv. 2015, 5, 34481.  doi: 10.1039/C5RA04374C

    118. [118]

      Hu, X.-Q.; Chen, J.-R.; Gao, S.; Feng, B.; Lu, L.-Q.; Xiao, W.-J. Chem. Commun. 2013, 49, 7905.  doi: 10.1039/c3cc43888k

    119. [119]

      Li, Z.; Li, S.; Kan, T.; Wang, X.; Xin, X.; Hou, Y.; Gong, P. Adv. Synth. Catal. 2020, 362, 2626.  doi: 10.1002/adsc.202000398

    120. [120]

      Water, R. W. V. D.; Pettus, T. R. R. Tetrahedron 2002, 58, 5367.  doi: 10.1016/S0040-4020(02)00496-9

    121. [121]

      Grotenhuis, C. T.; Bruin, B. D. Synlett 2018, 29, 2238.  doi: 10.1055/s-0037-1610204

    122. [122]

      Yang, B.; Gao, S. Chem. Soc. Rev. 2018, 47, 7926.  doi: 10.1039/C8CS00274F

    123. [123]

      Mei, G.-J.; Zhu, Z.-Q.; Zhao, J.-J.; Bian, C.-Y.; Chen, J.; Chen, R.-W.; Shi, F. Chem. Commun. 2017, 53, 2768.  doi: 10.1039/C6CC09775H

    124. [124]

      Chen, L.; Yang, G.; Wang, J.; Jia, Q.; Wei, J.; Du, Z. RSC Adv. 2015, 5, 76696.  doi: 10.1039/C5RA15903B

    125. [125]

      Jin, Q.; Zhang, J.; Jiang, C.; Zhang, D.; Gao, M.; Hu, S. J. Org. Chem. 2018, 83, 8410.  doi: 10.1021/acs.joc.8b01055

    126. [126]

      Li, C.; Wang, C. S.; Li, T. Z.; Mei, G. J.; Shi, F. Org. Lett. 2019, 21, 598.  doi: 10.1021/acs.orglett.8b03604

    127. [127]

      Dai, W.; Li, C.; Liu, Y.; Han, X.; Li, X.; Chen, K.; Liu, H. Org. Chem. Front. 2020, 7, 2612..  doi: 10.1039/D0QO00320D

    128. [128]

      Wei, L.; Wang, Z. F.; Yao, L.; Qiu, G.; Tao, H.; Li, H.; Wang, C. J. Adv. Syn. Catal. 2016, 358, 3955.  doi: 10.1002/adsc.201600961

    129. [129]

      Yuan, C.; Wu, Y.; Wang, D.; Zhang, Z.; Wang, C.; Zhou, L.; Zhang, C.; Song, B.; Guo, H. Adv. Syn. Catal. 2018, 360, 652.  doi: 10.1002/adsc.201701247

    130. [130]

      Yang, Q.-Q.; Yin, X.; He, X.-L.; Du, W.; Chen, Y.-C. ACS Catal. 2019, 9, 1258.  doi: 10.1021/acscatal.8b04942

    131. [131]

      Wu, Y.; Qiao, G.; Liu, H.; Zhang, L.; Sun, Z.; Xiao, Y.; Guo, H. RSC Adv. 2015, 5, 84290.  doi: 10.1039/C5RA12401H

    132. [132]

      Shi, F.; Zhu, R. Y.; Dai, W.; Wang, C. S.; Tu, S. J. Chem.-Eur. J. 2014, 20, 2597.  doi: 10.1002/chem.201304187

    133. [133]

      Yuan, C.; Liu, H.; Gao, Z.; Zhou, L.; Feng, Y.; Xiao, Y.; Guo, H., Org. Lett. 2015, 17, 26.  doi: 10.1021/ol503169d

    134. [134]

      Yang, W.-L.; Li, C.-Y.; Qin, W.-J.; Tang, F.-F.; Yu, X.; Deng, W.-P. ACS Catal. 2016, 6, 5685.  doi: 10.1021/acscatal.6b01596

    135. [135]

      Kim, S.; Kim, S.-G. Asian J. Org. Chem. 2019, 8, 1621.  doi: 10.1002/ajoc.201900073

    136. [136]

      Dai, Z.; Zhu, J.; Wang, J.; Su, W.; Yang, F.; Zhou, Q. Adv. Synth. Catal. 2019, 362, 545.

    137. [137]

      Zhao, H.-W.; Wang, L.-R.; Guo, J.-M.; Ding, W.-Q.; Song, X.-Q.; Wu, H.-H.; Tang, Z.; Fan, X.-Z.; Bi, X.-F. Adv. Synth. Catal. 2019, 361, 4761.  doi: 10.1002/adsc.201900651

    138. [138]

      Niu, B.; Wu, X. Y.; Wei, Y.; Shi, M. Org. Lett. 2019, 21, 4859.  doi: 10.1021/acs.orglett.9b01748

    139. [139]

      Wu, Y.; Liu, H.; Zhang, L.; Sun, Z.; Xiao, Y.; Huang, J.; Wang, M.; Guo, H. RSC Adv. 2016, 6, 73547.  doi: 10.1039/C6RA14018A

    140. [140]

      Potowski, M.; Bauer, J. O.; Strohmann, C.; Antonchick, A. P.; Waldmann, H. Angew. Chem. Int. Ed. 2012, 51, 9512.  doi: 10.1002/anie.201204394

    141. [141]

      He, Z.-L.; Teng, H.-L.; Wang, C.-J. Angew. Chem. Int. Ed. 2013, 52, 2934.  doi: 10.1002/anie.201208799

    142. [142]

      Teng, H. L.; Yao, L.; Wang, C. J. J. Am. Chem. Soc. 2014, 136, 4075.  doi: 10.1021/ja500878c

    143. [143]

      Li, Q. H.; Wei, L.; Wang, C. J. J. Am. Chem. Soc. 2014, 136, 8685.  doi: 10.1021/ja503309u

    144. [144]

      He, Z. L.; Sheong, F. K.; Li, Q. H.; Lin, Z.; Wang, C. J. Org. Lett. 2015, 17, 1365.  doi: 10.1021/acs.orglett.5b00011

    145. [145]

      Liu, H.; Wu, Y.; Zhao, Y.; Li, Z.; Zhang, L.; Yang, W.; Jiang, H.; Jing, C.; Yu, H.; Wang, B.; Xiao, Y.; Guo, H. J. Am. Chem. Soc. 2014, 136, 2625.  doi: 10.1021/ja4122268

    146. [146]

      Petzold, M.; Jones, P. G.; Werz, D. B. Angew. Chem. Int. Ed. 2019, 58, 6225.  doi: 10.1002/anie.201814409

    147. [147]

      Petzold, M.; Günther, A.; Jones, P. G., Werz, D. B. Chem.-Eur. J. 2020, in press.

    148. [148]

      Suneja, A.; Loui, H. J.; Schneider, C. Angew. Chem. Int. Ed. 2020, 59, 5536.  doi: 10.1002/anie.201913603

    149. [149]

      McLeod, D.; Cherubini-Celli, A.; Sivasothirajah, N.; McCulley, C. H.; Christensen, M. L.; Jørgensen, K. A. Chem.-Eur. J. 2020, 26, 11417.  doi: 10.1002/chem.202001369

    150. [150]

      Garve, L. K.; Petzold, M.; Jones, P. G.; Werz, D. B. Org. Lett. 2016, 18, 564.  doi: 10.1021/acs.orglett.5b03598

    151. [151]

      Zhao, H.-W.; Zhao, Y.-D.; Liu, Y.-Y.; Zhao, L.-J.; Song, X.-Q.; Chen, X.-Q.; Pang, H.-L.; Du, J.; Feng, N.-N. RSC Adv. 2017, 7, 55106.  doi: 10.1039/C7RA09766B

    152. [152]

      Pearson, W. H.; Fang, W.; Kampf, J. W. J. Org. Chem. 1994, 59, 2682.  doi: 10.1021/jo00089a007

    153. [153]

      Scadeng, O.; Ferguson, M. J.; West, F. G. Org. Lett. 2011, 13, 114.  doi: 10.1021/ol102651k

    154. [154]

      Zhang, H.-H.; Luo, Y.-C.; Wang, H.-P.; Chen, W.; Xu, P.-F. Org. Lett. 2014, 16, 4896.  doi: 10.1021/ol5024079

    155. [155]

      Xu, X.; Zhang, K.; Li, P.; Yao, H.; Lin, A. Org. Lett. 2018, 20, 1781.  doi: 10.1021/acs.orglett.8b00280

    156. [156]

      D'Souza, A. M.; Spiccia, N.; Basutto, J.; Jokisz, P.; Wong, L. S.-M.; Meyer, A. G.; Holmes, A. B.; White, J. M.; Ryan, J. H. Org. Lett. 2011, 13, 486.  doi: 10.1021/ol102824k

    157. [157]

      D'Souza, A. M.; Rivinoja, D. J.; Mulder, R. J.; White, J. M.; Meyer, A. G.; Hyland, C. J. T.; Ryan, J. H. Aust. J. Chem. 2018, 71, 690.  doi: 10.1071/CH18196

    158. [158]

      Soeta, T.; Tamura, K.; Ukaji, Y. Org. Lett. 2012, 14, 1226.  doi: 10.1021/ol2034542

    159. [159]

      Wu, Y.; Tian, B.; Hu, C.; Sekine, K.; Rudolph, M.; Rominger, F.; Hashmi, S. Org. Biomol. Chem. 2019, 17, 5505.  doi: 10.1039/C9OB00740G

    160. [160]

      Kumari, P.; Liu, W.; Wang, C. J.; Dai, J.; Wang, M. X.; Yang, Q. Q.; Deng, Y. H.; Shao, Z. Chin. J. Chem. 2019, 38, 151.

    161. [161]

      Trost, B. M.; Zuo, Z. Angew. Chem. Int. Ed. 2020, 59, 1243.  doi: 10.1002/anie.201911537

    162. [162]

      Zheng, P.; Li, C.; Mou, C.; Pan, D.; Wu, S.; Xue, W.; Jin, Z.; Chi, Y. R. Asian J. Org. Chem. 2019, 8, 1067.  doi: 10.1002/ajoc.201900153

  • 加载中
    1. [1]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    2. [2]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    3. [3]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    4. [4]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    5. [5]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    6. [6]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    7. [7]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    8. [8]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    9. [9]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    10. [10]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    11. [11]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    12. [12]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    13. [13]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    14. [14]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    15. [15]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    16. [16]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    19. [19]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    20. [20]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

Metrics
  • PDF Downloads(148)
  • Abstract views(4473)
  • HTML views(1747)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return