Citation: Wu Dunqi, Cheng Xuan, Liu Yankai, Cheng Guo, Guan Xiaoyu, Deng Qinghai. A New Class of Chiral Pincer-Type PNN Ligands for Pd-Catalyzed Asymmetric Allylic Alkylation[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3362-3370. doi: 10.6023/cjoc202005090 shu

A New Class of Chiral Pincer-Type PNN Ligands for Pd-Catalyzed Asymmetric Allylic Alkylation

  • Corresponding author: Deng Qinghai, qinghaideng@shnu.edu.cn
  • Received Date: 30 May 2020
    Revised Date: 16 June 2020
    Available Online: 8 July 2020

    Fund Project: the Shanghai Engineering Research Center of Green Energy Chemical Engineering 18DZ2254200the National Natural Science Foundation of China 21772122Project supported by the National Natural Science Foundation of China (Nos. 21402119, 21772122) and the Shanghai Engineering Research Center of Green Energy Chemical Engineering (No. 18DZ2254200)the National Natural Science Foundation of China 21402119

Figures(2)

  • tridentate P, N, N-donor pincer ligands bearing two or three stereocenters, 1-(4, 5-dihydro-oxazol-2-yl)-N-(2-(diphenylphosphanyl)benzyl)methanamines (oxpma), were synthesized starting from readily available amino acids in five or six steps. They were applied in palladium-catalyzed asymmetric allylic alkylation of allylic acetates to afford the desired products with high enantioselectivities (up to 96% ee).
  • 加载中
    1. [1]

      For selected books and reviewes on chiral pincer ligands, see: (a) Liu, J.-K.; Gong, J.-F.; Song, M.-P. Org. Biomol. Chem. 2019, 17, 6069.
      (b) Morales-Morales, D. Pincer Compounds: Chemistry and Applications, Elsevier, Amsterdam, 2018.
      (c) Asay, M.; Morales-Morales, D. Dalton Trans. 2015, 44, 17432.
      (d) Deng, Q.-H.; Melen, R. L.; Gade, L. H. Acc. Chem. Res. 2014, 47, 3162.
      (e) Szabó, K. L.; Wendt, O. F. Pincer and Pincer-Type Complexes, Wiley-VCH, Weinheim, 2014.

    2. [2]

      (a) Hua, Y.-Y.; Bin, H.-Y.; Wei, T.; Cheng, H.-A.; Lin, Z.-P.; Fu, X.-F.; Li, Y.-Q.; Xie, J.-H.; Yan, P.-C.; Zhou, Q.-L. Org. Lett. 2020, 22, 818.
      (b) Gu, X.-S.; Yu, N.; Yang, X.-H.; Zhu, A.-T.; Xie, J.-H.; Zhou, Q.-L. Org. Lett. 2019, 21, 4111.
      (c) Chen, G.-Q.; Lin, B.-J.; Huang, J.-M.; Zhao, L.-Y.; Chen, Q.-S.; Jia, S.-P.; Yin, Q.; Zhang, X. J. Am. Chem. Soc. 2018, 140, 8064.
      (d) Zhang, Y.-M.; Yuan, M.-L.; Liu, W.-P.; Xie, J.-H.; Zhou, Q.-L. Org. Lett. 2018, 20, 4486.
      (e) Liu, Y.-T.; Chen, J.-Q.; Li, L.-P.; Shao, X.-Y.; Xie, J.-H.; Zhou, Q.-L. Org. Lett. 2017, 19, 3231.
      (f) Zhu, G.-L.; Zhang, X.-D.; Yang, L.-J.; Xie, J.-H.; Che, D.-Q.; Zhou, Q.-L.; Yan, P.-C.; Li, Y.-Q. Org. Process Res. Dev. 2016, 20, 81.
      (g) Yan, P.-C.; Xie, J.-H.; Zhang, X.-D.; Chen, K.; Li, Y.-Q.; Zhou, Q.-L.; Che, D.-Q. Chem. Commun. 2014, 50, 15987.
      (h) Yang, X.-H.; Wang, K.; Zhu, S.-F.; Xie, J.-H.; Zhou, Q.-L. J. Am. Chem. Soc. 2014, 136, 17426.
      (i) Yang, X.-H.; Xie, J.-H.; Zhou, Q.-L. Org. Chem. Front. 2014, 1, 190.
      (j) Yan, P.-C.; Zhu, G.-L.; Xie, J.-H.; Zhang, X.-D.; Zhou, Q.-L.; Li, Y.-Q.; Shen, W.-H.; Che, D.-Q. Org. Process Res. Dev. 2013, 17, 307.
      (k) Zhang, Q.-Q.; Xie, J.-H.; Yang, X.-H.; Xie, J.-B.; Zhou, Q.-L. Org. Lett. 2012, 14, 6158.
      (l) Xie, J.-H.; Liu, X.-Y.; Xie, J.-B.; Wang, L.-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2011, 50, 7329.

    3. [3]

      Zhang, F.-H.; Wang, C.; Xie, J.-H.; Zhou, Q.-L. Adv. Synth. Catal. 2019, 361, 2832.  doi: 10.1002/adsc.201900251

    4. [4]

      Zhang, L.; Tang, Y.; Han, Z.; Ding, K. Angew.Chem., Int.Ed. 2019, 58, 4973.  doi: 10.1002/anie.201814751

    5. [5]

      (a) Yamamura, T.; Nakane, S.; Nomura, Y.; Tanaka, S.; Kitamura, M. Tetrahedron 2016, 72, 3781.
      (b) Yamamura, T.; Nakatsuka, H.; Tanaka, S.; Kitamura, M. Angew. Chem., Int. Ed. 2013, 52, 9313.

    6. [6]

      (a) Ling, F.; Chen, J.; Nian, S.; Hou, H.; Yi, X.; Wu, F.; Xu, M.; Zhong, W. Synlett 2020, 31, 285.
      (b) Qin, C.; Hou, C.-J.; Liu, H.; Liu, Y.-J.; Huang, D.-Z.; Hu, X.-P. Tetrahedron Lett. 2018, 59, 719.
      (c) Widegren, M. B.; Harkness, G. J.; Slawin, A. M. Z.; Cordes, D. B.; Clarke, M. L. Angew. Chem., Int. Ed. 2017, 56, 5825.
      (d) Chen, X.-S.; Hou, C.-J.; Qin, C.; Liu, H.; Liu, Y.-J.; Huang, D.-Z.; Hu, X.-P. RSC Adv. 2017, 7, 12871.
      (e) Hou, C.-J.; Hu, X.-P. Org. Lett. 2016, 18, 5592.
      (f) Nie, H.; Zhou, G.; Wang, Q.; Chen, W.; Zhang, S. Tetrahedron: Asymmetry 2013, 24, 1567.
      (g) Yamamura, T.; Nakatsuka, H.; Tanaka, S.; Kitamura, M. Angew. Chem., Int. Ed. 2013, 52, 9313.

    7. [7]

      (a) Gu, G.; Hu, Y.; Liu, S.; Dong, X.-Q.; Zhang, X. Chin. J. Org. Chem. 2020, 40, 997(in Chinese).
      (古国贤, 胡杨, 刘绍东, 董秀琴, 张绪穆, 有机化学, 2020, 40, 997.)
      (b) Gu, G.; Yang, T.; Yu, O.; Qian, H.; Wang, J.; Wen, J.; Dang, L.; Zhang, X. Org. Lett. 2017, 19, 5920.
      (c) Wu, W.; You, C.; Yin, C.; Liu, Y.; Dong, X.-Q.; Zhang, X. Org. Lett. 2017, 19, 2548.
      (d) Wu, W.; Liu, S.; Duan, M.; Tan, X.; Chen, C.; Xie, Y.; Lan, Y.; Dong, X.-Q.; Zhang, X. Org. Lett. 2016, 18, 2938.

    8. [8]

      (a) Demmans, K. Z.; Olson, M. E.; Morris, R. H. Organometallics 2018, 37, 4608.
      (b) Díaz-Valenzuela, M. B.; Phillips, S. D.; France, M. B.; Gunn, M. E.; Clarke, M. L. Chem.-Eur. J. 2009, 15, 1227.

    9. [9]

      Liu, H.; Yuan, H.; Shi, X. Dalton Trans. 2019, 48, 609.  doi: 10.1039/C8DT04413A

    10. [10]

      (a) Blasius, C. K.; Ren, B.-T.; Bürgy, D.; Liu, Y.-K.; Li, B.; Michalsky, I.; Wadepohl, H.; Deng, Q.-H.; Gade, L. H. J. Org. Chem. 2020, 85, 6719.
      (b) Wang, C.-J.; Sun, J.; Zhou, W.; Xue, J.; Ren, B.-T.; Zhang, G.-Y.; Mei, Y.-L.; Deng, Q.-H. Org. Lett. 2019, 21, 7315.
      (c) Bleith, T.; Deng, Q.-H.; Wadepohl, H.; Gade, L. H. Angew. Chem., Int. Ed. 2016, 55, 7852.
      (d) Deng, Q.-H.; Rettenmeier, C.; Wadepohl, H.; Gade, L. H. Chem.-Eur. J. 2014, 20, 93.
      (e) Deng, Q.-H.; Bleith, T.; Wadepohl, H.; Gade, L. H. J. Am. Chem. Soc. 2013, 135, 5356.
      (f) Deng, Q.-H.; Wadepohl, H.; Gade, L. H. J. Am. Chem. Soc. 2012, 134, 2946.
      (g) Deng, Q.-H.; Wadepohl, H.; Gade, L. H. J. Am. Chem. Soc. 2012, 134, 10769.
      (h) Deng, Q.-H.; Wadepohl, H.; Gade, L. H. Chem.-Eur. J. 2011, 17, 14922.

    11. [11]

      For selected reviewes on chiral oxazoline-containing ligands, see: (a) Liu, X.; Chen, P.; Wu, F. Chin. J. Org. Chem. 2016, 36, 1797(in Chinese).
      (刘小建, 陈品红, 吴范宏, 有机化学, 2016, 36, 1797.)
      (b) Liu, L.; Ma, H.; Wu, Y.; Yuan, D.; Liu, J.; Fu, B.; Ma, X. Chin. J. Org. Chem. 2013, 33, 2283(in Chinese).
      (刘磊, 麻红利, 吴燕华, 袁德凯, 刘吉平, 傅滨, 马晓东, 有机化学, 2013, 33, 2283.)
      (c) Desimoni, G.; Faita, G.; Jørgensen, K. A. Chem. Rev. 2011, 111, PR284.
      (d) Rasappan, R.; Laventine, D.; Reiser, O. Coord. Chem. Rev. 2008, 252, 702.
      (e) McManus, H. A.; Guiry, P. J. Chem. Rev. 2004, 104, 4151.

    12. [12]

      For selected reviewes and examples on metal-catalyzed asymmetric allylic alkylation, see: (a) Cheng, Q.; Tu, H.-F.; Zheng, C.; Qu, J.-P.; Helmchen, G.; You, S.-L. Chem. Rev. 2019, 119, 1855.
      (b) James, J.; Jackson, M.; Guiry, P. J. Adv. Synth. Catal. 2019, 361, 3016.
      (c) Yu, F.-L.; Bai, D.-C.; Liu, X.-Y.; Jiang, Y.-J.; Ding, C.-H.; Hou, X.-L. ACS Catal. 2018, 8, 3317.
      (d) Farkas, G.; Császár, Z.; Stágel, K.; Nemes, E.; Balogh, S.; Tóth, I.; Bényei, A.; Lendvay, G.; Bakos, J. J. Organomet. Chem. 2017, 846, 129.
      (e) Jiang, Y.-J.; Zhang, G.-P.; Huang, J.-Q.; Chen, D.; Ding, C.-H.; Hou, X.-L. Org. Lett. 2017, 19, 5932.
      (f) Zheng, N.; Song, W. Chin. J. Org. Chem. 2017, 37, 1099(in Chinese).
      (郑楠, 宋汪泽, 有机化学, 2017, 37, 1099.)
      (g) Fu, J.; Huo, X.; Li, B.; Zhang, W. Org. Biomol. Chem. 2017, 15, 9747.
      (h) Hethcox, J. C.; Shockley, S. E.; Stoltz, B. M. ACS Catal. 2016, 6, 6207.
      (i) Bai, D.-C.; Yu, F.-L.; Wang, W.-Y.; Chen, D.; Li, H.; Liu, Q.-R.; Ding, C.-H.; Chen, B.; Hou, X.-L. Nat. Commun. 2016, 7, 11806.
      (j) Bai, D.-C.; Wang, W.-Y.; Ding, C.-H.; Hou, X.-L. Synlett 2015, 26, 1510.
      (k) Zhuo, C.-X.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2014, 47, 2558.
      (l) Ding, C.-H.; Hou, X.-L. Top. Organomet. Chem. 2011, 36, 247.
      (m) You, S.-L.; Dai, L.-X. Angew. Chem., Int. Ed. 2006, 45, 5246.
      (n) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395.

    13. [13]

      Singh, S. P.; Michaelides, A.; Merrill, A. R.; Schwan, A. L. J. Org. Chem. 2011, 76, 6825.  doi: 10.1021/jo2008093

    14. [14]

      Qi, M.-H.; Wang, F.-J.; Shi, M. Tetrahedron:Asymmetry 2010, 21, 247.  doi: 10.1016/j.tetasy.2010.02.003

    15. [15]

      Li, X.; Taechalertpaisarn, J.; Xin, D.; Burgess, K. Org. Lett. 2015, 17, 632.  doi: 10.1021/ol5036547

    16. [16]

      (a) Miao, C.; Wang, B.; Wang, Y.; Xia, C.; Lee, Y.-M.; Nam, W.; Sun, W. J. Am. Chem. Soc. 2016, 138, 936.
      (b) Steinig, A. G.; Spero, D. M. J. Org. Chem. 1999, 64, 2406.

    17. [17]

      Wang, Y.; Du, S.; Armstrong, D. W. Anal. Bioanal. Chem. 2018, 410, 4725.  doi: 10.1007/s00216-018-0901-5

    18. [18]

      Gagnon, D.; Lauzon, S.; Godbout, C.; Spino, C. Org. Lett. 2005, 7, 4769.  doi: 10.1021/ol052034n

    19. [19]

      Lee, J.-Y.; Miller, J. J.; Hamilton, S. S.; Sigman, M. S. Org. Lett. 2005, 7, 1837.  doi: 10.1021/ol050528e

    20. [20]

      Jung, B.; Kang, S. H. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 1471.  doi: 10.1073/pnas.0607865104

    21. [21]

      Cheng, H.-G.; Feng, B.; Chen, L.-Y.; Guo, W.; Yu, X.-Y.; Lu, L.-Q.; Chen, J.-R.; Xiao, W.-J. Chem. Commun. 2014, 50, 2873.  doi: 10.1039/C3CC49488H

    22. [22]

      Jayakumar, S.; Prakash, M.; Balaraman, K.; Kesavan, V. Eur. J. Org. Chem. 2014, 606.

    23. [23]

      Hao, X.-Q.; Dong, Y.-N.; Gao, B.; Li, K.; Zhao, X.-M.; Xu, Y.; Song, M.-P. Tetrahedron:Asymmetry 2015, 26, 1360.  doi: 10.1016/j.tetasy.2015.10.007

    24. [24]

      Jin, Y.; Du, D.-M. Tetrahedron 2012, 68, 3633  doi: 10.1016/j.tet.2012.02.078

    25. [25]

      Xu, J.-X.; Ye, F.; Bai, X.-F.; Zhang, J.; Xu, Z.; Zheng, Z.-J.; Xu, L.-W. RSC Adv. 2016, 6, 45495.  doi: 10.1039/C6RA09657C

  • 加载中
    1. [1]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    2. [2]

      Guang XuCuiju ZhuXiang LiKexin ZhuHao Xu . Copper-catalyzed asymmetric [4+1] annulation of yne–allylic esters with pyrazolones. Chinese Chemical Letters, 2025, 36(4): 110114-. doi: 10.1016/j.cclet.2024.110114

    3. [3]

      Jieshuai XiaoYuan ZhengYue ZhaoZhuangzhi ShiMinyan Wang . Asymmetric Nozaki-Hiyama-Kishi (NHK)-type reaction of isatins with aromatic iodides by cobalt catalysis. Chinese Chemical Letters, 2025, 36(5): 110243-. doi: 10.1016/j.cclet.2024.110243

    4. [4]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    5. [5]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    6. [6]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    7. [7]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    8. [8]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    9. [9]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    10. [10]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    11. [11]

      Yanxin JiangKwai Wun ChengZhiping YangJun (Joelle) Wang . Pd-catalyzed enantioselective and regioselective asymmetric hydrophosphorylation and hydrophosphinylation of enynes. Chinese Chemical Letters, 2025, 36(5): 110231-. doi: 10.1016/j.cclet.2024.110231

    12. [12]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    13. [13]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    14. [14]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    15. [15]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    16. [16]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    17. [17]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    18. [18]

      Jumei ZhangZiheng ZhangGang LiHongjin QiaoHua XieLing Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278

    19. [19]

      Yongsheng XuLisha YaoJian LiYanzhao DongDongyang XieMiaomiao ZhangFeng LiYunsheng DaiJinli ZhangHaiyang Zhang . Dual-ligand engineering over Au-based catalyst for efficient acetylene hydrochlorination. Chinese Chemical Letters, 2025, 36(3): 110318-. doi: 10.1016/j.cclet.2024.110318

    20. [20]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

Metrics
  • PDF Downloads(6)
  • Abstract views(970)
  • HTML views(154)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return