Reactions of Iron(II) Complexes Supported by Tripodal Amido-Phosphine-Amido Ligands with Diazo Compounds
- Corresponding author: Deng Liang, deng@sioc.ac.cn
Citation:
Liu Jian, Xiao Jie, Mondal Sudipta, Leng Xuebing, Deng Liang. Reactions of Iron(II) Complexes Supported by Tripodal Amido-Phosphine-Amido Ligands with Diazo Compounds[J]. Chinese Journal of Organic Chemistry,
;2020, 40(10): 3380-3389.
doi:
10.6023/cjoc202005089
Herrmann, W. A. Angew. Chem., Int. Ed. 1978, 17, 800.
doi: 10.1002/anie.197808001
Sutton, D. Chem. Rev. 1993, 93, 995.
doi: 10.1021/cr00019a008
Mizobe, Y.; Ishii, Y.; Hidai, M. Coord. Chem. Rev. 1995, 139, 281.
doi: 10.1016/0010-8545(94)01118-U
Poverenov, E.; Leitus, G.; Shimon, L. J. W.; Milstein, D. Organo- metallics 2005, 24, 5937.
Samant, R. G.; Graham, T. W.; Rowsell, B. D.; McDonald, R.; Cowie, M. Organometallics 2008, 27, 3070.
doi: 10.1021/om700756q
Brookhart, M.; Studabaker, W. B. Chem. Rev. 1987, 87, 411.
doi: 10.1021/cr00078a008
Chauvin, Y. Angew. Chem., Int. Ed. 2006, 45, 3740.
doi: 10.1002/anie.200601234
Schrock, R. R. Angew. Chem., Int. Ed. 2006, 45, 3748.
doi: 10.1002/anie.200600085
Grubbs, R. H. Angew. Chem., Int. Ed. 2006, 45, 3760.
doi: 10.1002/anie.200600680
Zhu, S.-F.; Zhou, Q.-L. Natl. Sci. Rev. 2014, 1, 580.
doi: 10.1093/nsr/nwu019
Albertin, G.; Antoniutti, S.; Forcolin, M.; Gasparato, D. Polyhedron 2016, 104, 46.
doi: 10.1016/j.poly.2015.11.021
Albertin, G.; Antoniutti, S.; Botter, A.; Castro, J. Inorg. Chem. 2015, 54, 2091.
doi: 10.1021/ic502963n
Albertin, G.; Antoniutti, S.; Castro, J.; Dottorello, G. Dalton Trans 2015, 44, 9289.
doi: 10.1039/C5DT00755K
Albertin, G.; Antoniutti, S.; Bortoluzzi, M.; Castro, J.; Marzaro, L. Dalton Trans 2015, 44, 15470.
doi: 10.1039/C5DT02113H
Werner, H.; Mahr, N.; Wolf, J.; Fries, A.; Laubender, M.; Bleuel, E.; Garde, R.; Lahuerta, P. Organometallics 2003, 22, 3566.
doi: 10.1021/om0302037
Bonyhady, S. J.; Goldberg, J. M.; Wedgwood, N.; Dugan, T. R.; Eklund, A. G.; Brennessel, W. W.; Holland, P. L. Inorg. Chem. 2015, 54, 5148.
doi: 10.1021/acs.inorgchem.5b00673
Li, Y.; Huang, J.-S.; Zhou, Z.-Y.; Che, C.-M.; You, X.-Z. J. Am. Chem. Soc. 2002, 124, 13185.
doi: 10.1021/ja020391c
Bart, S. C.; Bowman, A. C.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2007, 129, 7212.
doi: 10.1021/ja070056u
Sazama, G. T.; Betley, T. A. Inorg. Chem. 2014, 53, 269.
doi: 10.1021/ic402210j
Bonyhady, S. J.; DeRosha, D. E.; Vela, J.; Vinyard, D. J.; Cowley, R. E.; Mercado, B. Q.; Brennessel, W. W.; Holland, P. L. Inorg. Chem. 2018, 57, 5959.
doi: 10.1021/acs.inorgchem.8b00468
Albertin, G.; Antoniutti, S.; Bortoluzzi, M.; Botter, A.; Castro, J.; Sibilla, F. RSC Adv. 2016, 6, 97650.
doi: 10.1039/C6RA22051G
Russell, S. K.; Hoyt, J. M.; Bart, S. C.; Milsmann, C.; Stieber, S. C. E.; Semproni, S. P.; DeBeer, S.; Chirik, P. J. Chem. Sci. 2014, 5, 1168.
doi: 10.1039/C3SC52450G
Liu, J.; Hu, L.; Wang, L.; Chen, H.; Deng, L. J. Am. Chem. Soc. 2017, 139, 3876.
doi: 10.1021/jacs.7b00484
Xiao, J.; Deng, L. Dalton Trans. 2013, 42, 5607.
doi: 10.1039/c3dt50518a
Smit, T. M.; Tomov, A. K.; Gibson, V. C.; White, A. J. P.; Williams, D. J. Inorg. Chem. 2004, 43, 6511.
doi: 10.1021/ic0490775
Cheng, J.; Liu, J.; Leng, X.; Lohmiller, T.; Schnegg, A.; Bill, E.; Ye, S.; Deng, L. Inorg. Chem. 2019, 58, 7634.
doi: 10.1021/acs.inorgchem.9b01147
Chisholm, M. H.; Folting, K.; Huffman, J. C.; Ratermann, A. L. Inorg. Chem. 1984, 23, 2303.
doi: 10.1021/ic00183a019
Sydora, O. L.; Kuiper, D. S.; Wolczanski, P. T.; Lobkovsky, E. B.; Dinescu, A.; Cundari, T. R. Inorg. Chem. 2006, 45, 2008.
doi: 10.1021/ic051481w
Straub, B. F.; Rominger, F.; Hofmann, P. Organometallics 2000, 19, 4305.
doi: 10.1021/om000430y
Olmstead, M. M.; Power, P. P.; Shoner, S. C. Inorg. Chem. 1991, 30, 2547.
doi: 10.1021/ic00011a017
Javed, M. I.; Brewer, M. Org. Lett. 2007, 9, 1789.
doi: 10.1021/ol070515w
Iluc, V. M.; Laskowski, C. A.; Hillhouse, G. L. Organometallics 2009, 28, 6135.
doi: 10.1021/om900566k
Evans, D. F. J. Chem. Soc. 1959, 2003.
Sheldrick, G. M. SADABS: Program for Empirical Absorption Correction of Area Detector Data, University of G ttingen, G ttingen, Germany, 1996.
Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.
doi: 10.1103/PhysRev.136.B864
Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.
doi: 10.1103/PhysRev.140.A1133
Neese F.. ORCA-an ab initio, Density Functional and Semiempirical Program Package, Version 4.1.0[J]. Max-Planck Institute for Bioinorganic Chemistry, Mulheim an der Ruhr, Germany, 2017.
Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
doi: 10.1063/1.464913
Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
doi: 10.1103/PhysRevB.37.785
Schäfer, A.; Horn, H.; Ahlrichs, R. J. Chem. Phys. 1992, 97, 2571.
doi: 10.1063/1.463096
Schäfer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100, 5829.
doi: 10.1063/1.467146
Pantazis, D. A.; Chen, X.-Y.; Landis, C. R.; Neese, F. J. Chem. Theory Comput. 2008, 4, 908.
doi: 10.1021/ct800047t
Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Chem. Phys. 2009, 356, 98.
doi: 10.1016/j.chemphys.2008.10.036
Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem. 2011, 32, 1456.
doi: 10.1002/jcc.21759
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104.
doi: 10.1063/1.3382344
Zhongsen Wang , Lijun Qiu , Yunhua Huang , Meng Zhang , Xi Cai , Fanyu Wang , Yang Lin , Yanbiao Shi , Xiao Liu . Alcohothermal synthesis of sulfidated zero-valent iron for enhanced Cr(Ⅵ) removal. Chinese Chemical Letters, 2024, 35(7): 109195-. doi: 10.1016/j.cclet.2023.109195
Jiangshan Xu , Weifei Zhang , Zhengwen Cai , Yong Li , Long Bai , Shaojingya Gao , Qiang Sun , Yunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620
Xianzheng Zhang , Yana Chen , Zhiyong Ye , Huilin Hu , Ling Lei , Feng You , Junlong Yao , Huan Yang , Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200
Xing Tian , Di Wu , Wanheng Wei , Guifu Dai , Zhanxian Li , Benhua Wang , Mingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Yunlong Li , Xinyu Zhang , Shuang Liu , Chunsheng Li , Qiang Wang , Jin Ye , Yong Lu , Jiating Xu . Engineered iron-based metal-organic frameworks nanoplatforms for cancer theranostics: A mini review. Chinese Chemical Letters, 2025, 36(2): 110501-. doi: 10.1016/j.cclet.2024.110501
Cheng-Shuang Wang , Bing-Yu Zhou , Yi-Feng Wang , Cheng Yuan , Bo-Han Kou , Wei-Wei Zhao , Jing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080
Zhenfei Tang , Yunwu Zhang , Zhiyuan Yang , Haifeng Yuan , Tong Wu , Yue Li , Guixiang Zhang , Xingzhi Wang , Bin Chang , Dehui Sun , Hong Liu , Lili Zhao , Weijia Zhou . Iron-doping regulated light absorption and active sites in LiTaO3 single crystal for photocatalytic nitrogen reduction. Chinese Chemical Letters, 2025, 36(3): 110107-. doi: 10.1016/j.cclet.2024.110107
Zhen Zhang , Xue-ling Chen , Xiu-Mei Xie , Tian-Yu Gao , Jing Qin , Jun-Jie Li , Chao Feng , Da-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056
Qiao Song , Xue Peng , Zhouyu Wang , Leyong Wang . Iron-catalyzed C–H activation: A sustainable approach to efficient organic synthesis. Chinese Chemical Letters, 2025, 36(5): 110869-. doi: 10.1016/j.cclet.2025.110869
Xueying Shi , Xiaoxuan Zhou , Bing Xiao , Hongxia Xu , Wei Zhang , Hongjie Hu , Shiqun Shao , Zhuxian Zhou , Youqing Shen , Xiaodan Xu , Jianbin Tang . A β-lapachone-loaded iron-polyphenol nanocomplex enhances chemodynamic therapy through cascade amplification of ROS in tumor. Chinese Chemical Letters, 2025, 36(5): 110178-. doi: 10.1016/j.cclet.2024.110178
Ting Pan , Dinghu Zhang , Guomei You , Xiaoxia Wu , Chenguang Zhang , Xinyu Miao , Wenzhi Ren , Yiwei He , Lulu He , Yuanchuan Gong , Jie Lin , Aiguo Wu , Guoliang Shao . PD-L1 targeted iron oxide SERS bioprobe for accurately detecting circulating tumor cells and delineating tumor boundary. Chinese Chemical Letters, 2025, 36(1): 109857-. doi: 10.1016/j.cclet.2024.109857
Xinyu Guo , Chang Li , Wenjun Deng , Yi Zhou , Yan Chen , Yushuang Xu , Rui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715
Heng Gao , Zhaocong Cheng , Guangshui Tu , Zonglin Qiu , Xieyi Xiao , Haotian Zhou , Handou Zheng , Haiyang Gao . Thermally robust bis(imino)pyridyl iron catalysts for ethylene polymerization: Synergy effects of weak π-π interaction, steric bulk, and electronic tuning. Chinese Chemical Letters, 2025, 36(5): 110762-. doi: 10.1016/j.cclet.2024.110762
Haoying ZHAI , Lanzong WEN , Wenjie LIAO , Qin LI , Wenjun ZHOU , Kun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320
Mei Peng , Wei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899
Wei Sun , Anjing Liao , Li Lei , Xu Tang , Ya Wang , Jian Wu . Research progress on piperidine-containing compounds as agrochemicals. Chinese Chemical Letters, 2025, 36(1): 109855-. doi: 10.1016/j.cclet.2024.109855
Xinlong Han , Huiying Zeng , Chao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817
Haitao Yin , Liang Meng , Li Li , Jiamu Xiao , Longrui Liang , Nannan Huang , Yansong Shi , Angang Zhao , Jingwen Hou . Polydopamine-modified biochar supported polylactic acid and zero-valent iron affects the functional microbial community structure for 1,1,1-trichloroethane removal in simulated groundwater. Chinese Chemical Letters, 2025, 36(1): 110313-. doi: 10.1016/j.cclet.2024.110313
Selected distances (nm) and angles (°): Fe1—N1, 0.19877(14); Fe1—N2, 0.19926(14); Fe1—P1, 0.24116(5); Fe1—Cl1, 0.2845; Fe1—O1, 0.20626(13); N1—Fe1—N2, 123.31(6); N1—Fe1—P1, 80.99(4); N1—Fe1—O1, 113.78(6); N2—Fe1—P1, 84.25(4); N2—Fe1—O1, 121.62(6); P1— Fe1—O1, 117.17(4); P1—Fe1—Cl1, 153.00
Selected distances (nm) and angles (°): Fe1—P1, 0.21628(4); Fe1—N3, 0.18571(11); Fe1—N4, 0.18559(11); Fe1—N1, 0.19601(11); Fe1—N2, 0.17524(11); N3—Fe1—P1, 85.38(3); N4—Fe1—P1, 85.93(4); N4— Fe1—N3, 128.91(5)
The data (dots) and best fits (solid line) are shown. The fitting data are compiled in Table 1
Selected distances (nm) and angles (°): Fe1—P1, 0.22431(8); Fe1—O1, 0.19696(17); Fe1—N1, 0.19258(19); Fe1—N2, 0.19382(19); Fe1—N3, 0.1874(2); O1—Fe1—P1, 169.88(5); N1—Fe1—P1, 83.23(6); N1— Fe1—O1, 93.65(7); N1—Fe1—N2, 138.58(9); N2—Fe1—P1, 83.55(6); N2—Fe1—O1, 92.61(8)
Selected distances (nm) and angles (°): Fe1—Cl1, 0.26554(6); Fe1—P1, 0.28358(6); Fe(1)—N(1), 0.20286(17); Fe1—N2, 0.19863(17); Fe1—C1 0.2146(2); P(1)—C(1), 0.1786(2); Cl1—Fe1—P1, 157.063(19); N1— Fe1—Cl1, 75.25(5); N1—Fe1—P1, 82.53(5); N1—Fe1—C1, 88.10(7); N2—Fe1—Cl1, 115.76(5) N2—Fe1—P1, 77.93(5); N2—Fe1—N1, 112.567; N2—Fe1—C1, 111.30(7); C1—Fe1—Cl1, 132.93(5); C1— Fe1—P1, 39.01(5)