Citation: Ng Chun-Fai, Wong Wai-Shing, Ip Ho-Wang, Lau Wing-Wa, Sun Xiao-Qing, Tse Ho-Wing, He Lisi, Cheung Enoch, Kuck Dietmar, Chow Hak-Fun. Nonplanar Nanographenes Based on Tribenzotriquinacene or Fenestrindane Core[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3017-3025. doi: 10.6023/cjoc202005083 shu

Nonplanar Nanographenes Based on Tribenzotriquinacene or Fenestrindane Core

  • Corresponding author: Chow Hak-Fun, hfchow@cuhk.edu.hk
  • Received Date: 29 May 2020
    Revised Date: 20 July 2020
    Available Online: 30 July 2020

    Fund Project: the Research Grants Council of Hong Kong Special Administration Region 14303816Project supported by the Research Grants Council of Hong Kong Special Administration Region (No. 14303816)

Figures(17)

  • Our recent research efforts on the synthesis of nonplanar nanographenes bearing tribenzotriquinacene or fenestrindane skeleton are summarized. Wizard hat-shaped or saddle-shaped nanographenes could be prepared using a non-classical Scholl-type cycloheptatriene formation or 19-membered ring macrocyclization. The key to the success of these transformation relies on the proper installation of the electron rich aryl functional groups in the bay areas of these molecular motifs. The three-dimensional structures of some of the nanographenes were determined by X-ray crystallography. Furthermore, these carbon-rich π-conjugated molecules are also showed to have interesting photophysical, self-assoication and host-guest complexation properties.
  • 加载中
    1. [1]

      Narita, A.; Wang, X.-Y.; Feng, X.; Müllen, K. Chem. Soc. Rev. 2015, 44, 6616.  doi: 10.1039/C5CS00183H

    2. [2]

      Segawa, Y.; Ito, H.; Itami, K. Nat. Rev. Mater. 2016, 1, 15002.  doi: 10.1038/natrevmats.2015.2

    3. [3]

      Márquez, I. R.; Castro-Fernández, S.; Millána, A.; Campaña, A. G. Chem. Commun. 2018, 54, 6705.  doi: 10.1039/C8CC02325E

    4. [4]

      Higashibayashi, S.; Sakurai, H. In Polycyclic Arenes and Heteroarenes: Synthesis, Properties, and Applications, Ed.: Miao, Q., Wiley-VCH, Weinheim, 2016, p. 61.

    5. [5]

      Cheung, K. Y.; Miao, Q. In Polycyclic Arenes and Heteroarenes: Synthesis, Properties, and Applications, Ed.: Miao, Q., Wiley-VCH, Weinheim, 2016, p. 85.

    6. [6]

      Deng, C.-L.; Peng, X.-S.; Wong, H. N. C. In Polycyclic Arenes and Heteroarenes: Synthesis, Properties, and Applications, Ed.: Miao, Q., Wiley-VCH, Weinheim, 2016, p. 111.

    7. [7]

      Yamago, S.; Kayahara, E.; Hashimoto, S. In Polycyclic Arenes and Heteroarenes: Synthesis, Properties, and Applications, Ed.: Miao, Q., Wiley-VCH, Weinheim, 2016, p. 143.

    8. [8]

      Collins, S. K.; Grandbois, A.; Vachon, M. P.; Côté, J. Angew. Chem., Int. Ed. 2006, 45, 2923.  doi: 10.1002/anie.200504150

    9. [9]

      Fujikawa, T.; Segawa, Y.; Itami, K. J. Am. Chem. Soc. 2015, 137, 7763.  doi: 10.1021/jacs.5b03118

    10. [10]

      Kashihara, H.; Asada, T.; Kamikawa, K. Chem.-Eur. J. 2015, 21, 6523.  doi: 10.1002/chem.201500074

    11. [11]

      Tellenbröker, J.; Kuck. D. Angew. Chem., Int. Ed. 1999, 38, 919.  doi: 10.1002/(SICI)1521-3773(19990401)38:7<919::AID-ANIE919>3.0.CO;2-O

    12. [12]

      Tellenbröker, J.; Kuck. D. Eur. J. Org. Chem. 2001, 1483.

    13. [13]

      Kuck, D. Chem. Rev. 2006, 106, 4885.  doi: 10.1021/cr050546+

    14. [14]

      Kuck, D. Angew. Chem., Int. Ed. Engl. 1984, 23, 508.  doi: 10.1002/anie.198405081

    15. [15]

      Kuck, D.; Lindenthal, T.; Schuster, A. Chem. Ber. 1992, 125, 1449.  doi: 10.1002/cber.19921250623

    16. [16]

      Kuck, D.; Schuster, A.; Krause, R. A.; Tellenbröker, J.; Exner, C. P.; Penk, M.; Bögge, H.; Müller, A. Tetrahedron 2001, 57, 3587.  doi: 10.1016/S0040-4020(01)00246-0

    17. [17]

      Kuck, D. Pure Appl. Chem. 2006, 78, 749.  doi: 10.1351/pac200678040749

    18. [18]

      Brandenburg, J. G.; Grimme, S.; Jones, P. G.; Markopoulos, G.; Hopf, H.; Cyranski, M. K.; Kuck, D. Chem.-Eur. J. 2013, 19, 9930.  doi: 10.1002/chem.201300761

    19. [19]

      Xu, W.-R.; Xia, G.-J.; Chow, H.-F.; Cao, X.-P.; Kuck, D. Chem.- Eur. J. 2015, 21, 12011.  doi: 10.1002/chem.201501556

    20. [20]

      Strübe, J.; Neumann, B.; Stammler, H.-G.; Kuck, D. Chem.-Eur. J. 2009, 15, 2256.  doi: 10.1002/chem.200802371

    21. [21]

      Klotzbach, S.; Scherpf, T.; Beuerle, F. Chem. Commun. 2014, 50, 12454.  doi: 10.1039/C4CC01794C

    22. [22]

      Klotzbach, S.; Beuerle, F. Angew. Chem., Int. Ed. 2015, 54, 10356.  doi: 10.1002/anie.201502983

    23. [23]

      Beaudoin, D.; Rominger, F.; Mastalerz, M. Angew. Chem., Int. Ed. 2016, 55, 15599.  doi: 10.1002/anie.201609073

    24. [24]

      Kirchwehm, Y.; Damme, A.; Kupfer, T.; Braunschweig, H.; Krueger, A. Chem. Commun. 2012, 48, 1502.  doi: 10.1039/C1CC14703J

    25. [25]

      Linke, J.; Bader, N.; Tellenbröker, J.; Kuck, D. Synthesis 2018, 50, 175.  doi: 10.1055/s-0036-1589107

    26. [26]

      Kuck, D.; Linke, J.; Teichmann, L. C.; Barth, D.; Tellenbröker, J.; Gestmann, D.; Neumann, B.; Stammler, H.-G.; Bögge, H. Phys. Chem. Chem. Phys. 2016, 18, 11722.  doi: 10.1039/C5CP07005H

    27. [27]

      Mughal, E. U.; Kuck, D. Chem. Commun. 2012, 48, 8880.  doi: 10.1039/c2cc34245f

    28. [28]

      Scholl, R.; Mansfeld, J. Ber. Dtsch. Chem. Ges. 1910, 43, 1734.  doi: 10.1002/cber.19100430288

    29. [29]

      Grzybowski, M.; Skonieczny, K.; Butenschön, H.; Gryko, D. T. Angew. Chem., Int. Ed. 2013, 52, 9900.  doi: 10.1002/anie.201210238

    30. [30]

      Grzybowski, M.; Sadowski, B.; Butenschön, H.; Gryko, D. T. Angew. Chem., Int. Ed. 2020, 59, 2998.  doi: 10.1002/anie.201904934

    31. [31]

      Mughal, E. U.; Neumann, B.; Stammler, H.-G.; Kuck, D. Eur. J. Org. Chem. 2014, 2014, 7469.  doi: 10.1002/ejoc.201402995

    32. [32]

      Rempala, P.; Kroulík, J.; King, B. T. J. Org. Chem. 2006, 71, 5067.  doi: 10.1021/jo0526744

    33. [33]

      King, B. T.; Kroulík, J.; Robertson, C. R.; Rempala, P.; Hilton, C. L.; Korinek, J. D.; Gortari, L. M. J. Org. Chem. 2007, 72, 2279.  doi: 10.1021/jo061515x

    34. [34]

      Ip, H.-W.; Ng, C.-F.; Chow, H.-F.; Kuck, D. J. Am. Chem. Soc. 2016, 138, 13778.  doi: 10.1021/jacs.6b05820

    35. [35]

      Ip, H.-W.; Chow, H.-F.; Kuck, D. Org. Chem. Front. 2017, 4, 817.  doi: 10.1039/C7QO00132K

    36. [36]

      CCDC-1474467 contains the crystallographic data for 10.

    37. [37]

      Fujioka, Y. Bull. Chem. Soc. Jpn. 1984, 57, 3494.  doi: 10.1246/bcsj.57.3494

    38. [38]

      Bieri, M.; Treier, M.; Cai, J.; Aїt-Mansour, K.; Ruffieux, P.; Gröning, O.; Gröning, P.; Kastler, M.; Rieger, R.; Feng, X.; Müllen, K.; Fasel, R. Chem. Commun. 2009, 6919.

    39. [39]

      Liu, Y.; Narita, A.; Teyssandier, J.; Wagner, M.; De Feyter, S.; Feng, X.; Müllen, K. J. Am. Chem. Soc. 2016, 138, 15539.  doi: 10.1021/jacs.6b10369

    40. [40]

      Idelson, A.; Sterzenbach, C.; Jester, S.-S.; Tschierske, C.; Baumeister, U.; Höger. S. J. Am. Chem. Soc. 2017, 139, 4429.  doi: 10.1021/jacs.6b13020

    41. [41]

      Ikemoto, K.; Kobayashi, R.; Sato, S.; Isobe, H. Angew. Chem., Int. Ed. 2017, 56, 6511.  doi: 10.1002/anie.201702063

    42. [42]

      He, L.; Ng, C.-F.; Li, Y.; Liu, Z.; Kuck, D.; Chow, H.-F. Angew. Chem., Int. Ed. 2018, 57, 13635.  doi: 10.1002/anie.201808461

    43. [43]

      CCDC-1850232 contains the crystallographic data for 25.

    44. [44]

      Majewski, M. A.; Hong, Y.; Lis, T.; Gregoliński, J.; Chmielewski, P. J.; Cybińska, J.; Kim, D.; Stępień, M. Angew. Chem., Int. Ed. 2016, 55, 14072.  doi: 10.1002/anie.201608384

    45. [45]

      Kuck, D.; Bögge, H. J. Am. Chem. Soc. 1986, 108, 8107.  doi: 10.1021/ja00285a048

    46. [46]

      Kuck, D. Chem. Ber. 1994, 127, 409.  doi: 10.1002/cber.19941270218

    47. [47]

      Kuck, D. In Advances in Theoretically Interesting Molecules, Vol. 4, Ed.: Thummel, R. P., JAI Press, Greenwich, London, 1998, p. 81.

    48. [48]

      Kuck, D.; Schuster, A.; Krause, R. A. J. Org. Chem. 1991, 56, 3472.  doi: 10.1021/jo00011a006

    49. [49]

      An, P.; Chow, H.-F.; Kuck, D. Synlett 2016, 27, 1255.  doi: 10.1055/s-0035-1561443

    50. [50]

      Wong, W.-S.; Ng, C.-F.; Kuck, D.; Chow, H.-F. Angew. Chem., Int. Ed. 2017, 56, 12356.  doi: 10.1002/anie.201707505

    51. [51]

      CCDC-1528883 contains the crystallographic data for 36.

    52. [52]

      Wong, W.-S.; Lau, W.-W.; Li, Y.; Liu, Z.; Kuck, D.; Chow, H.-F. Chem.-Eur. J. 2020, 26, 4310.  doi: 10.1002/chem.201904949

    53. [53]

      Smith, J. N.; Lucas, N. T. Chem. Commun. 2018, 54, 4716.  doi: 10.1039/C8CC01903G

    54. [54]

      Liu, X.; Weinert, Z. J.; Sharafi, M.; Liao, C.; Li, J.; Schneebeli, S. T. Angew. Chem., Int. Ed. 2015, 54, 12772.  doi: 10.1002/anie.201506793

    55. [55]

      Wong, W.-S.; Tse, H.-W.; Cheung, E.; Kuck, D.; Chow, H.-F. J. Org. Chem. 2019, 84, 869.  doi: 10.1021/acs.joc.8b02719

  • 加载中
    1. [1]

      Wenying CuiZhetong JinWentao FuChengshuo Shen . Flag-hinge-like highly luminescent chiral nanographenes with twist geometry. Chinese Chemical Letters, 2024, 35(11): 109667-. doi: 10.1016/j.cclet.2024.109667

Metrics
  • PDF Downloads(17)
  • Abstract views(1771)
  • HTML views(313)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return