Citation: Zhang Huifang, Qiu Zaozao, Xie Zuowei. Recent Advances in Transition Metal-Promoted Multicomponent Cascade Reactions for Controlled Synthesis of Complex Carborane Derivatives[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3203-3213. doi: 10.6023/cjoc202005079 shu

Recent Advances in Transition Metal-Promoted Multicomponent Cascade Reactions for Controlled Synthesis of Complex Carborane Derivatives

  • Corresponding author: Qiu Zaozao, qiuzz@sioc.ac.cn Xie Zuowei, zxie@cuhk.edu.hk
  • Received Date: 28 May 2020
    Revised Date: 15 June 2020
    Available Online: 19 June 2020

    Fund Project: Chinese Academy of Sciences, and the Hong Kong Research Grants Council 14306519National Natural Science Foundation of China 21772223Project supported by the National Natural Science Foundation of China (No. 21772223), the Science and Technology Commission of Shanghai Municipality (No. 18590760800), the Chinese Academy of Sciences, and the Hong Kong Research Grants Council (No. 14306519)Science and Technology Commission of Shanghai Municipality 18590760800

Figures(22)

  • Carboranes are a class of carbon-boron molecular clusters with exceptional thermal and chemical stabilities. They are finding a variety of applications in medicine, materials, and coordination/organometallic chemistry as functional building blocks. To this end, the selective functionalization of carboranes has received growing research interests. Transition metal-promoted multicomponent cascade reactions are particularly attractive since they have the advantages of step- and atom- economy for the construction of complex products from readily available starting materials by simple operations. The recent advances in transition metal-promoted multicomponent cascade reactions for selective functionalization of carboranes are summarized in this focus review. The related reaction mechanisms and challenges in this research area are also discussed.
  • 加载中
    1. [1]

      (a) Grimes, R. N. Carboranes, 3rd ed., Academic Press, Amsterdam, 2016.
      (b) Hosmane, N. S. Boron Science: New Technologies and Application, CRC Press, Boca Raton, FL, 2012.

    2. [2]

      (a) Scholz, M.; Hey-Hawkins, E. Chem. Rev. 2011, 111, 7035.
      (b) Leśnikowski, Z. J. J. Med. Chem. 2016, 59, 7738.

    3. [3]

      (a) Hosmane, N. S.; Maguire, J. A. In Comprehensive Organometallic Chemistry Ⅲ, Vol. 3, Eds.: Crabtree, R. H.; Mingos, D. M. P., Elsevier, Oxford, 2007, Chapter 5.
      (b) Xie, Z. Acc. Chem. Res. 2003, 36, 1.
      (c) Yao, Z.-J.; Jin, G.-X. Coord. Chem. Rev. 2013, 257, 2522.
      (d) Qiu, Z.; Ren, S.; Xie, Z. Acc. Chem. Res. 2011, 44, 299.
      (e) Estrada, J.; Lavallo, V. Angew. Chem. Int. Ed. 2017, 56, 9906.
      (f) El-Hellani, A.; Lavallo, V. Angew. Chem. Int. Ed. 2014, 53, 4489.
      (g) Fisher, S. P.; Tomich, A. W.; Lovera, S. O.; Kleinsasser, J. F.; Guo, J.; Asay, M. J.; Nelson, H. M.; Lavallo, V. Chem. Rev. 2019, 119, 8262.
      (h) Yao, Z.-J.; Yu, W.-B.; Lin, Y.-J.; Huang, S.-L.; Li, Z.-H.; Jin, G.-X. J. Am. Chem. Soc. 2014, 136, 2825.
      (i) Gao, Y.; Guo, S.-T.; Cui, P.-F.; Aznarez, F.; Jin, G.-X. Chem. Commun. 2019, 55, 210.
      (j) Cui, P.-F.; Gao, Y.; Guo, S.-T.; Lin, Y.-J.; Li, Z.-H.; Jin, G.-X. Angew. Chem. Int. Ed. 2019, 58, 8129.

    4. [4]

      (a) Jude, H.; Disteldorf, H.; Fischer, S.; Wedge, T.; Hawkridge, A. M.; Arif, A. M.; Hawthorne, M. F.; Muddiman, D. C.; Stang, P. J. J. Am. Chem. Soc. 2005, 127, 12131.
      (b) Koshino, M.; Tanaka, T.; Solin, N.; Suenaga, K.; Isobe, H.; Nakamura, E. Science 2007, 316, 853.
      (c) Dash, B. P.; Satapathy, R.; Gaillard, E. R.; Maguire, J. A.; Hosmane, N. S. J. Am. Chem. Soc. 2010, 132, 6578.
      (d) Kung, C.-W.; Otake, K.; Buru, C. T.; Goswami, S.; Cui, Y.; Hupp, J. T.; Spokoyny, A. M.; Farha, O. K. J. Am. Chem. Soc. 2018, 140, 3871.
      (e) Villagómez, C. J.; Sasaki, T.; Tour, J. M.; Grill, L. J. Am. Chem. Soc. 2010, 132, 16848.
      (f) Qian, E. Q.; Wixtrom, A. I.; Axtell, J. C.; Saebi, A.; Rehak, P.; Han, Y.; Moully, E. H.; Mosallaei, D.; Chow, S.; Messina, M.; Wang, J.-Y.; Royappa, A. T.; Rheingold, A. L.; Maynard, H. D.; Kral, P.; Spokoyny, A. M. Nat. Chem. 2017, 9, 333.
      (g) Saha, A.; Oleshkevich, E.; Viñas, C.; Teixidor, F. Adv. Mater. 2017, 29, 1704238.
      (h) Guo, J.; Liu, D.; Zhang, J.; Zhang, J.; Miao, Q.; Xie, Z. Chem. Commun. 2015, 51, 12004.
      (i) Jung, D.; Saleh, L. M. A.; Berkson, Z. J.; El-Kady, M. F.; Hwang, J. Y.; Mohamed, N.; Wixtrom, A. I.; Titarenko, E.; Shao, Y.; McCarthy, K.; Guo, J.; Martini, I. B.; Kraemer, S.; Wegener, E. C.; Saint-Cricq, P.; Ruehle, B.; Langeslay, R. R.; Delferro, M.; Brosmer, J. L.; Hendon, C. H.; Gallagher-Jones, M.; Rodriguez, J.; Chapman, K. W.; Miller, J. T.; Duan, X.; Kaner, R. B.; Zink, J. I.; Chmelka, B. F.; Spokoyny, A. M. Nat. Mater. 2018, 17, 341.
      (j) Cui, P.-F.; Lin, Y.-J.; Li, Z.-H.; Jin, G.-X. J. Am. Chem. Soc. 2020, 142, 8532.

    5. [5]

      (a) Mukherjee, S.; Thilagar, P. Chem. Commun. 2016, 52, 1070.
      (b) Núñez, R.; Tarrés, M.; Ferrer-Ugalde, A.; de Biani, F. F.; Teixidor, F. Chem. Rev. 2016, 116, 14307.
      (c) Li, X.; Yan, H.; Zhao, Q. Chem. Eur. J. 2016, 22, 1888.

    6. [6]

      (a) Heying, T. L.; Ager, J. W.; Clark, S. L.; Mangold, D. J.; Goldstein, H. L.; Hillman, M.; Polak, R. J.; Szymanski, J. W. Inorg. Chem. 1963, 2, 1089.
      (b) Fein, M. M.; Bobinski, J.; Mayes, N.; Schwartz, N.; Cohen, M. S. Inorg. Chem. 1963, 2, 1111.
      (c) El-Zaria, M. E., Keskar, K., Genady, A. R., Ioppolo, J. A., McNulty, J.; Valliant, J. F. Angew. Chem. Int. Ed. 2014, 53, 5156.

    7. [7]

      (a) Wu, S.; Jones, M., Jr. Inorg. Chem. 1986, 25, 4802.
      (b) Bregadze, V. I. Chem. Rev. 1992, 92, 209.
      (c) Viñas, C.; Benakki, R.; Teixidor, F.; Casabó, J. Inorg. Chem. 1995, 34, 3844.
      (d) Gomez, F. A.; Johnson, S. E.; Hawthorne, M. F. J. Am. Chem. Soc. 1991, 111, 5915.
      (e) Gomez, F. A.; Hawthorne, M. F. J. Org. Chem. 1992, 57, 1384.
      (f) Anderson, K. P.; Mills, H. A.; Mao, C.; Kirlikovali, K. O.; Axtell, J. C.; Rheingold, A. L.; Spokoyny, A. M. Tetrahedron 2019, 75, 187.

    8. [8]

      (a) Lu, J.-Y.; Wan, H.; Zhang, J.; Wang, Z.; Li, Y.; Du, Y.; Li, C.; Liu, Z.-T.; Liu, Z.-W.; Lu, J. Chem.-Eur. J. 2016, 22, 17542.
      (b) Tang, C.; Xie, Z. Angew. Chem. Int. Ed. 2015, 54, 7662.
      (c) Xie, Z. Sci. China Chem. 2014, 57, 1061.
      (d) Coult, R.; Fox, M. A.; Gill, W. R.; Herbertson, P. L.; MacBride, J. A. H.; Wade, K. J. Organomet. Chem. 1993, 462, 19.

    9. [9]

      (a) Tang, C.; Zhang, J.; Xie, Z. Angew. Chem. Int. Ed. 2017, 56, 8642.
      (b) Tang, C.; Zhang, J.; Zhang, J.; Xie, Z. J. Am. Chem. Soc. 2018, 140, 16423.

    10. [10]

      Lyu, H.; Zhang, J.; Yang, J.; Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2019, 141, 4219.
      (b) Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2015, 137, 3502.
      (c) Quan, Y.; Xie, Z. Angew. Chem. Int. Ed. 2016, 55, 1295.
      (d) Zhang, X.; Yan, H. Chem. Sci. 2018, 9, 3964.
      (e) Zhang, X.; Zheng, H.; Li, J.; Xu, F.; Zhao, J.; Yan, H. J. Am. Chem. Soc. 2017, 139, 14511.
      (f) Cao, K.; Huang, Y.; Yang, J.; Wu, J. Chem. Commun. 2015, 51, 7257.
      (g) Lin, F.; Yu, J.-L.; Shen, Y.; Zhang, S.-Q.; Spingler, B.; Liu, J.; Hong, X.; Duttwyler, S. J. Am. Chem. Soc. 2018, 140, 13798.
      (h) Xu, T. T.; Cao, K.; Zhang, C. Y.; Wu, J.; Ding, L. F.; Yang, J. Org. Lett. 2019, 21, 9276.
      (i) Xu, T. T.; Cao, K.; Zhang, C. Y.; Wu, J.; Jiang, L.; Yang, J. Chem. Commun. 2018, 54, 13603.

    11. [11]

      (a) Liang, X.; Shen, Y.; Zhang, K.; Liu, J.; Duttwyler, S. Chem. Commun. 2018, 54, 12451.
      (b) Lin, F.; Shen, Y.; Zhang, Y.; Sun, Y.; Liu, J.; Duttwyler, S. Chem. Eur. J. 2018, 24, 551.
      (c) Lyu, H.; Quan, Y.; Xie, Z. Angew. Chem. Int. Ed. 2015, 54, 10623.
      (d) Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2014, 136, 15513.
      (e) Mirabelli, M. G. L.; Sneddon, L. G. J. Am. Chem. Soc. 1988, 110, 449.
      (f) Wu, J.; Cao, K.; Xu, T.-T.; Zhang, X.-J.; Jiang, L.; Yang, J.; Huang, Y., RSC Adv. 2015, 5, 91683.
      (g) Shen, Y.; Pan, Y.; Zhang, K.; Liang, X.; Liu, J.; Spingler, B.; Duttwyler, S. Dalton Trans. 2017, 46, 3135.
      (h) Shen, Y.; Zhang, K.; Liang, X.; Dontha, R.; Duttwyler, S. Chem. Sci. 2019, 10, 4177.
      (i) Cheng, R.; Qiu, Z.; Xie, Z. Chem. Eur. J. 2020, 26, 7121.

    12. [12]

      (a) Chen, Y.; Au, Y. K.; Quan, Y.; Xie, Z. Sci. China Chem. 2019, 62, 74.
      (b) Quan, Y.; Tang, C.; Xie, Z. Chem. Sci. 2016, 7, 5838.

    13. [13]

      Cheng, R.; Qiu, Z.; Xie, Z. Nat. Commun. 2017, 8, 14827.  doi: 10.1038/ncomms14827

    14. [14]

      Qiu, Z.; Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2013, 135, 12192.  doi: 10.1021/ja405808t

    15. [15]

      (a) Cui, C. X.; Zhang, J.; Qiu, Z.; Xie, Z. Dalton Trans. 2020, 49, 1380.
      (b) Au, Y. K.; Lyu, H.; Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2020, 142, 6940.
      (c) Lyu, H.; Quan, Y.; Xie, Z. Angew. Chem. Int. Ed. 2016, 55, 11840.
      (d) Cao, K.; Xu, T.-T.; Wu, J.; Jiang, L.; Yang, J. Chem. Commun. 2016, 52, 11446.
      (e) Li, C.-X.; Zhang, H.-Y.; Wong, T.-Y.; Cao, H.-J.; Yan, H.; Lu, C.-S. Org. Lett. 2017, 19, 5178.

    16. [16]

      Lyu, H.; Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2016, 138, 12727.  doi: 10.1021/jacs.6b07086

    17. [17]

      Lyu, H.; Quan, Y.; Xie, Z. Chem. Eur. J. 2017, 23, 14866.  doi: 10.1002/chem.201703006

    18. [18]

      (a) Quan, Y.; Qiu, Z.; Xie, Z. Chem. Eur. J. 2018, 24, 2795.
      (b) Quan, Y.; Xie, Z. Chem. Soc. Rev. 2019, 48, 3660.
      (c) Yu, W.-B.; Cui, P.-F.; Gao, W.-X.; Jin, G.-X. Coord. Chem. Rev. 2017, 350, 300.
      (d) Zhang, X.; Yan, H. Coord. Chem. Rev. 2019, 378, 466.

    19. [19]

      Qiu, Z.; Ren, S.; Xie, Z. Acc. Chem. Res. 2011, 44, 299.  doi: 10.1021/ar100156f

    20. [20]

      Qiu, Z.; Xie, Z. J. Am. Chem. Soc. 2009, 131, 2084.  doi: 10.1021/ja809389k

    21. [21]

      Deng, L.; Chan, H.-S.; Xie, Z. J. Am. Chem. Soc. 2006, 128, 7728.  doi: 10.1021/ja061605j

    22. [22]

      Ren, S.; Chan, H.-S.; Xie, Z. Organometallics 2009, 28, 4106.  doi: 10.1021/om9002973

    23. [23]

      Ren, S.; Qiu, Z.; Xie, Z. J. Am. Chem. Soc. 2012, 134, 3242.  doi: 10.1021/ja211485t

    24. [24]

      Ren, S.; Chan, H.-S.; Xie, Z. J. Am. Chem. Soc. 2009, 131, 3862.  doi: 10.1021/ja900563u

    25. [25]

      Ren, S.; Qiu, Z.; Xie, Z. Organometallics 2012, 31, 4435.  doi: 10.1021/om300202p

    26. [26]

      Ren, S.; Qiu, Z.; Xie, Z. Angew. Chem. Int. Ed. 2012, 51, 1010.  doi: 10.1002/anie.201106212

    27. [27]

      Quan, Y.; Zhang, J.; Xie, Z. J. Am. Chem. Soc. 2013, 135, 18742.  doi: 10.1021/ja410233e

    28. [28]

      Zhang, J.; Quan, Y.; Lin, Z.; Xie, Z. Organometallics 2014, 33, 3556.  doi: 10.1021/om5004545

    29. [29]

      Cui, C.-X.; Ren, S.; Qiu, Z.; Xie, Z. Dalton Trans. 2018, 47, 2453.  doi: 10.1039/C7DT04751G

    30. [30]

      Quan, Y.; Qiu, Z.; Xie, Z. J. Am. Chem. Soc. 2014, 136, 7599.  doi: 10.1021/ja503489b

    31. [31]

      Wang, Z.; Ye, H.; Li, Y.; Li, Y.; Yan, H. J. Am. Chem. Soc. 2013, 135, 11289.  doi: 10.1021/ja4047075

    32. [32]

      Zhang, R.; Zhu, L.; Liu, G.; Dai, H.; Lu, Z.; Zhao, J.; Yan, H. J. Am. Chem. Soc. 2012, 134, 10341.  doi: 10.1021/ja303334t

    33. [33]

      Qiu, Z.; Xie, Z. J. Am. Chem. Soc. 2010, 132, 16085.  doi: 10.1021/ja1058789

    34. [34]

      Lyu, H. Quan, Y.; Xie, Z. Chem. Sci. 2018, 9, 6390.

    35. [35]

      Au, Y.-K.; Lyu, H.; Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2019, 141, 12855.  doi: 10.1021/jacs.9b06204

    36. [36]

      Au, Y.-K.; Lyu, H.; Quan, Y.; Xie, Z. Chin. J. Chem. 2020, 38, 383.  doi: 10.1002/cjoc.201900475

    37. [37]

      (a) Li, J.; Logan, C. F.; Jones, M. Jr. Inorg. Chem. 1991, 30, 4866.
      (b) Zheng, Z.; Jiang, W.; Zinn, A. A.; Knobler, C. B.; Hawthorne, M. F. Inorg. Chem. 1995, 34, 2095.
      (c) Harakas, G.; Vu, T.; Knobler, C. B.; Hawthorne, M. F. J. Am. Chem. Soc. 1998, 120, 6405.
      (d) Viñas, C.; Barberà, G.; Oliva, J. M.; Teixidor, F.; Welch, A. J.; Rosair, G. M. Inorg. Chem. 2001, 40, 6555.

    38. [38]

      Ge, Y.; Zhang, J.; Qiu, Z.; Xie, Z. Angew. Chem. Int. Ed. 2020, 59, 4851.  doi: 10.1002/anie.201914500

    39. [39]

      (a) Poater, J.; Solà, M.; Viñas, C.; Teixidor, F. Chem. Eur. J. 2016, 22, 7437.
      (b) Axtell, J. C.; Saleh, L. M. A.; Qian, E. A.; Wixtrom, A. I.; Spokoyny, A. M. Inorg. Chem. 2018, 57, 2333.
      (c) Bolli, C.; Derendorf, J.; Keßler, M.; Knapp, C.; Scherer, H.; Schulz, C.; Warneke, J. Angew. Chem. Int. Ed. 2010, 49, 3536.
      (d) Kirchmann, M.; Wesemann, L. Dalton Trans. 2008, 2144.
      (e) Messina, M. S.; Axtell, J. C.; Wang, Y.; Chong, P.; Wixtrom, A. I.; Kirlikovali, K. O.; Upton, B. M.; Hunter, B. M.; Shafaat, O. S.; Khan, S. I.; Winkler, J. R.; Gray, H. B.; Alexandrova, A. N.; Maynard, H. D.; Spokoyny, A. M. J. Am. Chem. Soc. 2016, 138, 6952.
      (f) Peryshkov, D. V.; Strauss, S. H. Inorg. Chem. 2017, 56, 4072.
      (g) Wang, W.; Wang, X.; Cao, J.; Liu, J.; Qi, B.; Zhou, X.; Zhang, S.; Gabel, D.; Nau, W. M.; Assaf, K. I.; Zhang, H. Chem. Commun. 2018, 54, 2098.
      (h) Assaf, K. I.; Ural, M. S.; Pan, F.; Georgiev, T.; Simova, S.; Rissanen, K.; Gabel, D.; Nau, W. M. Angew. Chem. Int. Ed. 2015, 54, 6852.
      (i) Assaf, K. I.; Hennig, A.; Peng, S.; Guo, D.-S.; Gabel, D.; Nau, W. M. Chem. Commun. 2017, 53, 4616.
      (j) Jung, D.; Saleh, L. M. A.; Berkson, Z. J.; El-Kady, M. F.; Hwang, J. Y.; Mohamed, N.; Wixtrom, A. I.; Titarenko, E.; Shao, Y.; McCarthy, K.; Guo, J.; Martini, I. B.; Kraemer, S.; Wegener, E. C.; Saint-Cricq, P.; Ruehle, B.; Langeslay, R. R.; Delferro, M.; Brosmer, J. L.; Hendon, C. H.; Gallagher-Jones, M.; Rodriguez, J.; Chapman, K. W.; Miller, J. T.; Duan, X.; Kaner, R. B.; Zink, J. I.; Chmelka, B. F.; Spokoyny, A. M. Nat. Mater. 2018, 17, 341.

    40. [40]

      Zhang, Y.; Sun, Y.; Lin, F.; Liu, J.; Duttwyler, S. Angew. Chem. Int. Ed. 2016, 55, 15609.  doi: 10.1002/anie.201607867

    41. [41]

      Zhang, Y.; Wang, T.; Wang, L.; Sun, Y.; Lin, F.; Liu, J.; Duttwyler, S. Chem. Eur. J. 2018, 24, 15812.  doi: 10.1002/chem.201803455

    42. [42]

      Cheng, R.; Li, B.; Wu, J.; Zhang, J.; Qiu, Z.; Tang, W.; You, S. L.; Tang, Y.; Xie, Z. J. Am. Chem. Soc. 2018, 140, 4508.  doi: 10.1021/jacs.8b01754

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    4. [4]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    5. [5]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    6. [6]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    7. [7]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    8. [8]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    9. [9]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    10. [10]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    11. [11]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    12. [12]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    13. [13]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    14. [14]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    15. [15]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    16. [16]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    17. [17]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    18. [18]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

Metrics
  • PDF Downloads(7)
  • Abstract views(1567)
  • HTML views(233)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return