Citation: Chen Si, Zhao Yanchuan. C(sp3)—C(sp3) Bond Formation via Transition-Metal Mediated and Catalyzed Reductive Homocouplings[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3078-3093. doi: 10.6023/cjoc202005072 shu

C(sp3)—C(sp3) Bond Formation via Transition-Metal Mediated and Catalyzed Reductive Homocouplings

  • Corresponding author: Zhao Yanchuan, zhaoyanchuan@sioc.ac.cn
  • Received Date: 26 May 2020
    Revised Date: 19 July 2020
    Available Online: 30 July 2020

    Fund Project: the National Natural Science Foundation of China 21421002Project supported by the National Natural Science Foundation of China (Nos. 21421002, 21871291, 91956120), and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDC 06020102)the Strategic Priority Research Program of the Chinese Academy of Sciences XDC 06020102the National Natural Science Foundation of China 91956120the National Natural Science Foundation of China 21871291

Figures(29)

  • C(sp3)-C(sp3) bond coupling is of great significance in organic synthesis, among which reductive homocoupling has showed its special superiority in construction of symmetrical molecular structures. These reactions are usually operationally simple, which utilize organohalides as substrates, avoiding the handling of highly reactive organometallic reagents. The use of non-precise metals as the catalyst makes reductive homocouplings amenable for large-scale synthesis. Improved efficiency and selectivity have been observed in systems involving photoredox catalytic processes, ionic-liquids, and inorganic nanomaterials. This review aims to summarize the development of reductive couplings. In this review, various reductive homocouplings are summarized, where transition metals, such as cobalt, nickel, copper, titanium, and rhodium are involved. Photo-mediated reductive couplings are then highlighted followed by a discussion on applications of reductive couplings in natural products synthesis and polymer sciences.
  • 加载中
    1. [1]

      Wu, X. F.; Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem. Int. Ed. 2010, 49, 9047.  doi: 10.1002/anie.201006374

    2. [2]

      Li, Z. L.; Jin, J.; Huang, S. H. Chin. J. Org. Chem. 2020, 40, 563(in Chinese).
       

    3. [3]

      Dong, K.; Liu, Q.; Wu, L. Z. Acta Chim. Sinica 2020, 78, 299(in Chinese).

    4. [4]

      Li, Y. Q.; Fan, Y. H.; Jia, Q. F. Chin. J. Org. Chem. 2019, 39, 350(in Chinese).
       

    5. [5]

      Liu, L.; Xi, Z. F. Chin. J. Chem. 2019, 36, 1213.

    6. [6]

      Wang, K.; Kong, W. Q. Chin. J. Chem. 2018, 36, 247.  doi: 10.1002/cjoc.201700745

    7. [7]

      Voloshchuk, T.; Farina, N. S.; Wauchope, O. R.; Kiprowska, M.; Haberfield, P.; Greer, A. J. Nat. Prod. 2004, 67, 1141.  doi: 10.1021/np049899e

    8. [8]

      Buschleb, M.; Dorich, S.; Hanessian, S.; Tao, D.; Schenthal, K. B.; Overman, L. E. Angew. Chem. Int. Ed. 2016, 55, 4156.  doi: 10.1002/anie.201507549

    9. [9]

      Kirchhoff, J. H.; Dai, C.; Fu, G. C. Angew. Chem. Int. Ed. 2002, 41, 1945.  doi: 10.1002/1521-3773(20020603)41:11<1945::AID-ANIE1945>3.0.CO;2-7

    10. [10]

      Hua, S. K.; Hu, Q. P.; Ren, J. M. Zeng, B. B. Synthesis 2013, 45, 518.  doi: 10.1055/s-0032-1316841

    11. [11]

      Tran, U. P. N.; Hock, K. J.; Gordon, C. P.; Koenigs, R. M.; Nguyen, T. V. Chem. Commun. 2017, 53, 4950.  doi: 10.1039/C7CC02033C

    12. [12]

      Du, F.; Zhou, Q.; Liu, D.; Fang, T.; Shi, Y.; Du, Y.; Chen, G. Synlett 2018, 29, 779.  doi: 10.1055/s-0036-1591892

    13. [13]

      Yamada, Y.; Momose, D. Chem. Lett. 1981, 10, 1277.  doi: 10.1246/cl.1981.1277

    14. [14]

      Barhdadi, R.; Courtinard, C.; Nedelec, J. Y.; Troupel, M. Chem. Comm. 2003, 12, 1434.

    15. [15]

      Schriver, G. W. Tetrahedron Lett. 1988, 29, 1521.  doi: 10.1016/S0040-4039(00)80341-X

    16. [16]

      Albrecht, M. Synthesis 1996, 230.

    17. [17]

      Shimizu, T.; Tanaka, K.; Paudel, A.; Yamato, T. J. Chem. Res. 2009, 570.

    18. [18]

      Gozhina, O. V.; Thomassen, I. K.; Lejon, T. Synth. Commun. 2013, 43, 1867.  doi: 10.1080/00397911.2012.675459

    19. [19]

      Zhang, W.; Li, A. Nat. Chem. 2017, 9, 198.  doi: 10.1038/nchem.2734

    20. [20]

      Aresta, M.; Rossi, M.; Sacco, A. Inorg. Chim. Acta 1969, 3, 227;  doi: 10.1016/S0020-1693(00)92484-8

    21. [21]

      Momose, D.; Iguchi, K.; Sugiyama, T.; Yamada, Y. Chem. Pharm. Bull. 1984, 32, 1840.

    22. [22]

      Fallon, B. J.; Corce, V.; Amatore, M.; Aubert, C.; Chemla, F.; Ferreira, F.; Perez-Luna, A.; Petit, M. New J. Chem. 2016, 40, 9912.  doi: 10.1039/C6NJ03265F

    23. [23]

      Cai, Y.; Qian, X.; Gosmini, C. Adv. Synth. Catal. 2016, 15, 358.

    24. [24]

      Giedyk, M.; Goliszewska, K.; Gryko, D. Chem. Soc. Rev. 2015, 44, 3391.  doi: 10.1039/C5CS00165J

    25. [25]

      Petrovic, Z.; Mojsilovic, B.; Bugarcic, Z. M. J. Mol. Catal. A:Chem. 2001, 170, 267.  doi: 10.1016/S1381-1169(00)00557-4

    26. [26]

      Shey, J.; McGinley, C. M.; McCauley, K. M.; Dearth, A. S.; Young, B. T.; Donk, W. A. J. Org. Chem. 2002, 67, 837.  doi: 10.1021/jo0160470

    27. [27]

      Giedyk, M.; Fedosov, S. N.; Gryko, D. Chem. Commun. 2014, 50, 4674.

    28. [28]

      Schrauzer, G. N.; Grate, J. H. J. Am. Chem. Soc. 1981, 103, 541.  doi: 10.1021/ja00393a009

    29. [29]

      Iyoda, M.; Sakaitani, M.; Otsuka, H.; Oda, M. Chem. Lett. 1985, 14, 127.  doi: 10.1246/cl.1985.127

    30. [30]

      Prinsell, M. R.; Everson, D. A.; Weix, D. J. Chem. Commun. 2010, 46, 5743.  doi: 10.1039/c0cc01716g

    31. [31]

      Zhou, J.; Fu, G. J. Am. Chem, Soc. 2003. 125. 14726.  doi: 10.1021/ja0389366

    32. [32]

      Vechorkim, O. Proust, V. Hu, X. J. Am. Chem. Soc. 2009, 131, 9756.

    33. [33]

      Chen, T.; Yang, L.; Li, L.; Huang, K. W. Tetrahedron 2012, 68, 6152.  doi: 10.1016/j.tet.2012.05.075

    34. [34]

      Mboyi, C. D.; Gaillard, S.; Mabaye, M. D.; Pannetier, N.; Renaud, J. L. Tetrahedron 2013, 69, 4875.  doi: 10.1016/j.tet.2013.04.073

    35. [35]

      Liu, Y. J.; Xiao, S. H.; Qi, Y.; Du, F. Chem. Asian J. 2017, 12, 673.  doi: 10.1002/asia.201601712

    36. [36]

      Nayak, M. K.; Mukhi, P.; Mohanty, A. Rana, S. S.; Arora, R.; Narjinari, H.; Roy, S. J. Chem. Sci. 2019, 131, 59.

    37. [37]

      Liu, Y. J.; Zhang, D. M.; Xiao, S. H.; Qi, Y.; Liu, S. F. Chem. Asian J. 2019, 8, 858.

    38. [38]

      Teo, W. J.; Wang, Z.; Xue, F.; Andy Hor, T. S.; Zhao, J. Dalton Trans. 2016, 45, 7312.  doi: 10.1039/C6DT00252H

    39. [39]

      Komeyama, K.; Tsunemitsu, R.; Michiyuji, T.; Yoshida, H.; Osaka, I. Molecules 2019, 24, 1458.

    40. [40]

      Jacobson, R. R.; Tyklar, Z.; Karlin, K. D. Inorg. Chim. Acta 1991, 181, 111.

    41. [41]

      Ma, J.; Chan, T. H. Tetrahedron Lett. 1998, 39, 2499.  doi: 10.1016/S0040-4039(98)00348-7

    42. [42]

      Liu, J.; Li, B. Synth. Commun. 2007, 37, 3273.  doi: 10.1080/00397910701483340

    43. [43]

      Shekarriz, M.; Adib, M.; Biabani, T.; Taghipoor, S. J. Chem. Res. 2012, 29.

    44. [44]

      Hu, Y. L.; Li, F.; Gu, G. L. Catal. Lett. 2011, 141, 467.  doi: 10.1007/s10562-010-0535-5

    45. [45]

      Sato, K.; Inoue, Y.; Mori, T.; Sakaue, A.; Taruo, A.; Omote, M.; Kumadaki, I.; Ando, A. Org. Lett. 2014, 16, 3756.  doi: 10.1021/ol501619w

    46. [46]

      Qian, Y.; Li, G.; Huang, Y. Z. J. Organomet. Chem. 1990, 381, 29.

    47. [47]

      Barrero, A. F.; Herrador, M. M.; Moral, J. F. Q.; Arteaga, P.; Akssira, M.; Hanbali, F. E.; Artega, J. F.; Dieguez, H. R.; Sanchez, E. M. J. Org. Chem. 2007, 72, 2251.

    48. [48]

      Barrero, A. F.; Herrador, M. M.; Moral, J. F. Q.; Arteaga, P.; Arteaga, J. F.; Piedra, M.; Sanchez, E, M, Org. Lett. 2005, 7, 2301.  doi: 10.1021/ol050335r

    49. [49]

      Gilbert, B. C.; Lindsay, C. I.; McGrail, P. T.; Parsons, A. F.; Whittaker, D. T. E. Synth. Commun. 1999, 29, 2711.  doi: 10.1080/00397919908086433

    50. [50]

      Huther, N.; McGrail, P. T.; Parsons, A. F. Eur. J. Org. Chem. 2004, 1740.

    51. [51]

      Hironaka, K.; Fukuzumi, S.; Tanaka, T. J. Chem. Soc., Perkin Trans. 21984, 1705.

    52. [52]

      Kern, J. M.; Sauvage, J. P. J. Chem. Soc., Chem. Commun. 1987, 546.

    53. [53]

      Fukuzumi, S.; Ishikawa, K.; Tanaka, T. Organometallics 1987, 6, 358.  doi: 10.1021/om00145a020

    54. [54]

      Zhang, Y.; Petersen, J. L.; Milsmann, C. Organometallics 2018, 37, 4488.

    55. [55]

      Park, G.; Yi, S. Y.; Jung, J.; Cho, E. J.; You. Y. Chem. Eur. J. 2016, 22, 17790.  doi: 10.1002/chem.201603517

    56. [56]

      Masuda, Y.; Ishida, N.; Murakami, M. Eur. J. Org. Chem. 2016, 5822.

    57. [57]

      Lanterna, A. E.; Elhage, A.; Scaiano, J. C. Catal. Sci. Technol. 2015, 5, 4336.

    58. [58]

      Vrettou, M.; Gray, A. A.; Brewer, A. R. E.; Barret, A. G. M. Tetrahedron 2007, 63, 1487.

    59. [59]

      Gentry, E. C. G.; Rono, L. J.; Hale, M. E.; Matsuura, R.; Knowles, R. R.; J. Am. Chem. Soc. 2018, 140, 3394.  doi: 10.1021/jacs.7b13616

    60. [60]

      Lathrop, S. P.; Pompeo, M. T.; Chang, W. T. T.; Movassaghi, M. J. Am. Chem. Soc. 2016, 138, 7763.  doi: 10.1021/jacs.6b04072

    61. [61]

      Ding, M.; Liang, K. J.; Pan, Rui.; Zhang, H. B.; Xia, C. F. J. Org. Chem. 2015, 80, 10309.

    62. [62]

      Bagal, S. K.; Adlington, R. M.; Baldwin, J. E.; Marquez. R. J. Org. Chem. 2004, 69, 9100.

    63. [63]

      Bagal, S. K.; Adlington, R. M.; Marquez, R.; Cowley, A. R.; Baldwin, J. E. Tetrahedron Lett. 2003, 44, 4993.

    64. [64]

      Bagal, S. K.; Adlington, R. M.; Baldwin, J. E.; Marquez, R. Cowley, A. Org. Lett. 2003, 5, 3049.  doi: 10.1021/ol035022f

    65. [65]

      Movassaghi, M.; Schmidt, M, A. Angew. Chem. Int. Ed. 2007, 46, 3725.  doi: 10.1002/anie.200700705

    66. [66]

      Iwasa, E.; Hamashima, Y.; Fujishiro, S.; Higuchi, E.; Ito, A.; Yoshida, M.; Sodeoka, M. J. Am. Chem. Soc. 2010, 132, 4078.  doi: 10.1021/ja101280p

    67. [67]

      Peng, Y.; Luo, L.; Yan, C. S.; Zhang, J. J.; Wang, Y. W. J. Org. Chem. 2013, 78, 10960.

    68. [68]

      Wada, M.; Murata, T.; Oikawa, H.; Oguri, H. Org. Biomol. Chem. 2014, 12, 298.

    69. [69]

      Goldup, S. M.; Leigh, D. A.; McBurney, R. T.; McGonigal, P. R.; Plant, A. Chem. Sci. 2010, 1, 383.

    70. [70]

      Gorham, W. F. J. Poly. Sci. 1966, 4, 3027.  doi: 10.1002/pol.1966.150041209

    71. [71]

      Liu, Z.; Wang, Q. RSC Adv. 2016, 6, 39568.  doi: 10.1039/C6RA02669A

    72. [72]

      Liu, Z.; Wang, Q. Polymer 2017, 100, 56.

    73. [73]

      Liu, Z.; Wang, Q. ACS Macro Lett. 2018, 7, 604.

    74. [74]

      Zhu, R.; Swager, T. M. J. Am. Chem. Soc. 2018. 140. 5211.  doi: 10.1021/jacs.8b01106

    75. [75]

      Chen, S.; Zhao, Y. Chin. J. Chem. 2020, 38, 953.

    76. [76]

      Pike, R. D.; Starnes Jr, W. H.; Jeng, J. P.; Bryant, W. S.; Kourtesis, P.; Adams, C. W.; Bunge, S. D.; Kang, Y. M.; Kim, A. S.; Kim, J. H.; Macko, J. A.; O'Brien, C. P. Macromolecules 1997, 30, 6957.  doi: 10.1021/ma9707749

    77. [77]

      Gao, B.; Zhao, Y. C.; Ni, C. F.; Hu, J. B. Org. Lett. 2014, 16, 102.  doi: 10.1021/ol403083e

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    4. [4]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    5. [5]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    6. [6]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    7. [7]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    8. [8]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    9. [9]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    10. [10]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    11. [11]

      Jun JiangHui DaiTao Tu . Two vicinal C(sp3)-F bonds functionalization of perfluoroalkyl halides (PFAHs). Chinese Chemical Letters, 2025, 36(7): 111054-. doi: 10.1016/j.cclet.2025.111054

    12. [12]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    13. [13]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    14. [14]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    15. [15]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    16. [16]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    17. [17]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    18. [18]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    19. [19]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    20. [20]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

Metrics
  • PDF Downloads(80)
  • Abstract views(3363)
  • HTML views(982)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return