Citation: Chen Si, Zhao Yanchuan. C(sp3)—C(sp3) Bond Formation via Transition-Metal Mediated and Catalyzed Reductive Homocouplings[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3078-3093. doi: 10.6023/cjoc202005072 shu

C(sp3)—C(sp3) Bond Formation via Transition-Metal Mediated and Catalyzed Reductive Homocouplings

  • Corresponding author: Zhao Yanchuan, zhaoyanchuan@sioc.ac.cn
  • Received Date: 26 May 2020
    Revised Date: 19 July 2020
    Available Online: 30 July 2020

    Fund Project: the National Natural Science Foundation of China 21421002Project supported by the National Natural Science Foundation of China (Nos. 21421002, 21871291, 91956120), and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDC 06020102)the Strategic Priority Research Program of the Chinese Academy of Sciences XDC 06020102the National Natural Science Foundation of China 91956120the National Natural Science Foundation of China 21871291

Figures(29)

  • C(sp3)-C(sp3) bond coupling is of great significance in organic synthesis, among which reductive homocoupling has showed its special superiority in construction of symmetrical molecular structures. These reactions are usually operationally simple, which utilize organohalides as substrates, avoiding the handling of highly reactive organometallic reagents. The use of non-precise metals as the catalyst makes reductive homocouplings amenable for large-scale synthesis. Improved efficiency and selectivity have been observed in systems involving photoredox catalytic processes, ionic-liquids, and inorganic nanomaterials. This review aims to summarize the development of reductive couplings. In this review, various reductive homocouplings are summarized, where transition metals, such as cobalt, nickel, copper, titanium, and rhodium are involved. Photo-mediated reductive couplings are then highlighted followed by a discussion on applications of reductive couplings in natural products synthesis and polymer sciences.
  • 加载中
    1. [1]

      Wu, X. F.; Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem. Int. Ed. 2010, 49, 9047.  doi: 10.1002/anie.201006374

    2. [2]

      Li, Z. L.; Jin, J.; Huang, S. H. Chin. J. Org. Chem. 2020, 40, 563(in Chinese).
       

    3. [3]

      Dong, K.; Liu, Q.; Wu, L. Z. Acta Chim. Sinica 2020, 78, 299(in Chinese).

    4. [4]

      Li, Y. Q.; Fan, Y. H.; Jia, Q. F. Chin. J. Org. Chem. 2019, 39, 350(in Chinese).
       

    5. [5]

      Liu, L.; Xi, Z. F. Chin. J. Chem. 2019, 36, 1213.

    6. [6]

      Wang, K.; Kong, W. Q. Chin. J. Chem. 2018, 36, 247.  doi: 10.1002/cjoc.201700745

    7. [7]

      Voloshchuk, T.; Farina, N. S.; Wauchope, O. R.; Kiprowska, M.; Haberfield, P.; Greer, A. J. Nat. Prod. 2004, 67, 1141.  doi: 10.1021/np049899e

    8. [8]

      Buschleb, M.; Dorich, S.; Hanessian, S.; Tao, D.; Schenthal, K. B.; Overman, L. E. Angew. Chem. Int. Ed. 2016, 55, 4156.  doi: 10.1002/anie.201507549

    9. [9]

      Kirchhoff, J. H.; Dai, C.; Fu, G. C. Angew. Chem. Int. Ed. 2002, 41, 1945.  doi: 10.1002/1521-3773(20020603)41:11<1945::AID-ANIE1945>3.0.CO;2-7

    10. [10]

      Hua, S. K.; Hu, Q. P.; Ren, J. M. Zeng, B. B. Synthesis 2013, 45, 518.  doi: 10.1055/s-0032-1316841

    11. [11]

      Tran, U. P. N.; Hock, K. J.; Gordon, C. P.; Koenigs, R. M.; Nguyen, T. V. Chem. Commun. 2017, 53, 4950.  doi: 10.1039/C7CC02033C

    12. [12]

      Du, F.; Zhou, Q.; Liu, D.; Fang, T.; Shi, Y.; Du, Y.; Chen, G. Synlett 2018, 29, 779.  doi: 10.1055/s-0036-1591892

    13. [13]

      Yamada, Y.; Momose, D. Chem. Lett. 1981, 10, 1277.  doi: 10.1246/cl.1981.1277

    14. [14]

      Barhdadi, R.; Courtinard, C.; Nedelec, J. Y.; Troupel, M. Chem. Comm. 2003, 12, 1434.

    15. [15]

      Schriver, G. W. Tetrahedron Lett. 1988, 29, 1521.  doi: 10.1016/S0040-4039(00)80341-X

    16. [16]

      Albrecht, M. Synthesis 1996, 230.

    17. [17]

      Shimizu, T.; Tanaka, K.; Paudel, A.; Yamato, T. J. Chem. Res. 2009, 570.

    18. [18]

      Gozhina, O. V.; Thomassen, I. K.; Lejon, T. Synth. Commun. 2013, 43, 1867.  doi: 10.1080/00397911.2012.675459

    19. [19]

      Zhang, W.; Li, A. Nat. Chem. 2017, 9, 198.  doi: 10.1038/nchem.2734

    20. [20]

      Aresta, M.; Rossi, M.; Sacco, A. Inorg. Chim. Acta 1969, 3, 227;  doi: 10.1016/S0020-1693(00)92484-8

    21. [21]

      Momose, D.; Iguchi, K.; Sugiyama, T.; Yamada, Y. Chem. Pharm. Bull. 1984, 32, 1840.

    22. [22]

      Fallon, B. J.; Corce, V.; Amatore, M.; Aubert, C.; Chemla, F.; Ferreira, F.; Perez-Luna, A.; Petit, M. New J. Chem. 2016, 40, 9912.  doi: 10.1039/C6NJ03265F

    23. [23]

      Cai, Y.; Qian, X.; Gosmini, C. Adv. Synth. Catal. 2016, 15, 358.

    24. [24]

      Giedyk, M.; Goliszewska, K.; Gryko, D. Chem. Soc. Rev. 2015, 44, 3391.  doi: 10.1039/C5CS00165J

    25. [25]

      Petrovic, Z.; Mojsilovic, B.; Bugarcic, Z. M. J. Mol. Catal. A:Chem. 2001, 170, 267.  doi: 10.1016/S1381-1169(00)00557-4

    26. [26]

      Shey, J.; McGinley, C. M.; McCauley, K. M.; Dearth, A. S.; Young, B. T.; Donk, W. A. J. Org. Chem. 2002, 67, 837.  doi: 10.1021/jo0160470

    27. [27]

      Giedyk, M.; Fedosov, S. N.; Gryko, D. Chem. Commun. 2014, 50, 4674.

    28. [28]

      Schrauzer, G. N.; Grate, J. H. J. Am. Chem. Soc. 1981, 103, 541.  doi: 10.1021/ja00393a009

    29. [29]

      Iyoda, M.; Sakaitani, M.; Otsuka, H.; Oda, M. Chem. Lett. 1985, 14, 127.  doi: 10.1246/cl.1985.127

    30. [30]

      Prinsell, M. R.; Everson, D. A.; Weix, D. J. Chem. Commun. 2010, 46, 5743.  doi: 10.1039/c0cc01716g

    31. [31]

      Zhou, J.; Fu, G. J. Am. Chem, Soc. 2003. 125. 14726.  doi: 10.1021/ja0389366

    32. [32]

      Vechorkim, O. Proust, V. Hu, X. J. Am. Chem. Soc. 2009, 131, 9756.

    33. [33]

      Chen, T.; Yang, L.; Li, L.; Huang, K. W. Tetrahedron 2012, 68, 6152.  doi: 10.1016/j.tet.2012.05.075

    34. [34]

      Mboyi, C. D.; Gaillard, S.; Mabaye, M. D.; Pannetier, N.; Renaud, J. L. Tetrahedron 2013, 69, 4875.  doi: 10.1016/j.tet.2013.04.073

    35. [35]

      Liu, Y. J.; Xiao, S. H.; Qi, Y.; Du, F. Chem. Asian J. 2017, 12, 673.  doi: 10.1002/asia.201601712

    36. [36]

      Nayak, M. K.; Mukhi, P.; Mohanty, A. Rana, S. S.; Arora, R.; Narjinari, H.; Roy, S. J. Chem. Sci. 2019, 131, 59.

    37. [37]

      Liu, Y. J.; Zhang, D. M.; Xiao, S. H.; Qi, Y.; Liu, S. F. Chem. Asian J. 2019, 8, 858.

    38. [38]

      Teo, W. J.; Wang, Z.; Xue, F.; Andy Hor, T. S.; Zhao, J. Dalton Trans. 2016, 45, 7312.  doi: 10.1039/C6DT00252H

    39. [39]

      Komeyama, K.; Tsunemitsu, R.; Michiyuji, T.; Yoshida, H.; Osaka, I. Molecules 2019, 24, 1458.

    40. [40]

      Jacobson, R. R.; Tyklar, Z.; Karlin, K. D. Inorg. Chim. Acta 1991, 181, 111.

    41. [41]

      Ma, J.; Chan, T. H. Tetrahedron Lett. 1998, 39, 2499.  doi: 10.1016/S0040-4039(98)00348-7

    42. [42]

      Liu, J.; Li, B. Synth. Commun. 2007, 37, 3273.  doi: 10.1080/00397910701483340

    43. [43]

      Shekarriz, M.; Adib, M.; Biabani, T.; Taghipoor, S. J. Chem. Res. 2012, 29.

    44. [44]

      Hu, Y. L.; Li, F.; Gu, G. L. Catal. Lett. 2011, 141, 467.  doi: 10.1007/s10562-010-0535-5

    45. [45]

      Sato, K.; Inoue, Y.; Mori, T.; Sakaue, A.; Taruo, A.; Omote, M.; Kumadaki, I.; Ando, A. Org. Lett. 2014, 16, 3756.  doi: 10.1021/ol501619w

    46. [46]

      Qian, Y.; Li, G.; Huang, Y. Z. J. Organomet. Chem. 1990, 381, 29.

    47. [47]

      Barrero, A. F.; Herrador, M. M.; Moral, J. F. Q.; Arteaga, P.; Akssira, M.; Hanbali, F. E.; Artega, J. F.; Dieguez, H. R.; Sanchez, E. M. J. Org. Chem. 2007, 72, 2251.

    48. [48]

      Barrero, A. F.; Herrador, M. M.; Moral, J. F. Q.; Arteaga, P.; Arteaga, J. F.; Piedra, M.; Sanchez, E, M, Org. Lett. 2005, 7, 2301.  doi: 10.1021/ol050335r

    49. [49]

      Gilbert, B. C.; Lindsay, C. I.; McGrail, P. T.; Parsons, A. F.; Whittaker, D. T. E. Synth. Commun. 1999, 29, 2711.  doi: 10.1080/00397919908086433

    50. [50]

      Huther, N.; McGrail, P. T.; Parsons, A. F. Eur. J. Org. Chem. 2004, 1740.

    51. [51]

      Hironaka, K.; Fukuzumi, S.; Tanaka, T. J. Chem. Soc., Perkin Trans. 21984, 1705.

    52. [52]

      Kern, J. M.; Sauvage, J. P. J. Chem. Soc., Chem. Commun. 1987, 546.

    53. [53]

      Fukuzumi, S.; Ishikawa, K.; Tanaka, T. Organometallics 1987, 6, 358.  doi: 10.1021/om00145a020

    54. [54]

      Zhang, Y.; Petersen, J. L.; Milsmann, C. Organometallics 2018, 37, 4488.

    55. [55]

      Park, G.; Yi, S. Y.; Jung, J.; Cho, E. J.; You. Y. Chem. Eur. J. 2016, 22, 17790.  doi: 10.1002/chem.201603517

    56. [56]

      Masuda, Y.; Ishida, N.; Murakami, M. Eur. J. Org. Chem. 2016, 5822.

    57. [57]

      Lanterna, A. E.; Elhage, A.; Scaiano, J. C. Catal. Sci. Technol. 2015, 5, 4336.

    58. [58]

      Vrettou, M.; Gray, A. A.; Brewer, A. R. E.; Barret, A. G. M. Tetrahedron 2007, 63, 1487.

    59. [59]

      Gentry, E. C. G.; Rono, L. J.; Hale, M. E.; Matsuura, R.; Knowles, R. R.; J. Am. Chem. Soc. 2018, 140, 3394.  doi: 10.1021/jacs.7b13616

    60. [60]

      Lathrop, S. P.; Pompeo, M. T.; Chang, W. T. T.; Movassaghi, M. J. Am. Chem. Soc. 2016, 138, 7763.  doi: 10.1021/jacs.6b04072

    61. [61]

      Ding, M.; Liang, K. J.; Pan, Rui.; Zhang, H. B.; Xia, C. F. J. Org. Chem. 2015, 80, 10309.

    62. [62]

      Bagal, S. K.; Adlington, R. M.; Baldwin, J. E.; Marquez. R. J. Org. Chem. 2004, 69, 9100.

    63. [63]

      Bagal, S. K.; Adlington, R. M.; Marquez, R.; Cowley, A. R.; Baldwin, J. E. Tetrahedron Lett. 2003, 44, 4993.

    64. [64]

      Bagal, S. K.; Adlington, R. M.; Baldwin, J. E.; Marquez, R. Cowley, A. Org. Lett. 2003, 5, 3049.  doi: 10.1021/ol035022f

    65. [65]

      Movassaghi, M.; Schmidt, M, A. Angew. Chem. Int. Ed. 2007, 46, 3725.  doi: 10.1002/anie.200700705

    66. [66]

      Iwasa, E.; Hamashima, Y.; Fujishiro, S.; Higuchi, E.; Ito, A.; Yoshida, M.; Sodeoka, M. J. Am. Chem. Soc. 2010, 132, 4078.  doi: 10.1021/ja101280p

    67. [67]

      Peng, Y.; Luo, L.; Yan, C. S.; Zhang, J. J.; Wang, Y. W. J. Org. Chem. 2013, 78, 10960.

    68. [68]

      Wada, M.; Murata, T.; Oikawa, H.; Oguri, H. Org. Biomol. Chem. 2014, 12, 298.

    69. [69]

      Goldup, S. M.; Leigh, D. A.; McBurney, R. T.; McGonigal, P. R.; Plant, A. Chem. Sci. 2010, 1, 383.

    70. [70]

      Gorham, W. F. J. Poly. Sci. 1966, 4, 3027.  doi: 10.1002/pol.1966.150041209

    71. [71]

      Liu, Z.; Wang, Q. RSC Adv. 2016, 6, 39568.  doi: 10.1039/C6RA02669A

    72. [72]

      Liu, Z.; Wang, Q. Polymer 2017, 100, 56.

    73. [73]

      Liu, Z.; Wang, Q. ACS Macro Lett. 2018, 7, 604.

    74. [74]

      Zhu, R.; Swager, T. M. J. Am. Chem. Soc. 2018. 140. 5211.  doi: 10.1021/jacs.8b01106

    75. [75]

      Chen, S.; Zhao, Y. Chin. J. Chem. 2020, 38, 953.

    76. [76]

      Pike, R. D.; Starnes Jr, W. H.; Jeng, J. P.; Bryant, W. S.; Kourtesis, P.; Adams, C. W.; Bunge, S. D.; Kang, Y. M.; Kim, A. S.; Kim, J. H.; Macko, J. A.; O'Brien, C. P. Macromolecules 1997, 30, 6957.  doi: 10.1021/ma9707749

    77. [77]

      Gao, B.; Zhao, Y. C.; Ni, C. F.; Hu, J. B. Org. Lett. 2014, 16, 102.  doi: 10.1021/ol403083e

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    4. [4]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    5. [5]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    6. [6]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    7. [7]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    8. [8]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    9. [9]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    10. [10]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    11. [11]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    14. [14]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    15. [15]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    16. [16]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    17. [17]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    18. [18]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    19. [19]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    20. [20]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

Metrics
  • PDF Downloads(77)
  • Abstract views(3185)
  • HTML views(940)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return