Citation: Zhang E, Chen Dandan, Wang Shoufeng, Liu Wen. Progress in Structural Modification of Bicyclic Thiopeptide Antibiotics Based on Biosynthesis[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3120-3131. doi: 10.6023/cjoc202005071 shu

Progress in Structural Modification of Bicyclic Thiopeptide Antibiotics Based on Biosynthesis

  • Corresponding author: Wang Shoufeng, chm_wangsf@ujn.edu.cn Liu Wen, wliu@mail.sioc.ac.cn
  • Received Date: 26 May 2020
    Revised Date: 20 June 2020
    Available Online: 8 July 2020

    Fund Project: the Science and Technology Commission of Shanghai Municipality 17JC1405100the National Natural Science Foundation of China 21520102004the Chinese Academy of Sciences XDB20020200the National Natural Science Foundation of China 21750004the Chinese Academy of Sciences QYZDJ-SSW-SLH037Project supported by the National Natural Science Foundation of China (Nos. 31972850, 21750004, 21520102004), the Shandong Key Research Program (No. 2019GSF108223), the Chinese Academy of Sciences (Nos. QYZDJ-SSW-SLH037, XDB20020200), the Science and Technology Commission of Shanghai Municipality (No. 17JC1405100), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2017303), and the K. C. Wong Education Foundationthe National Natural Science Foundation of China 31972850the Youth Innovation Promotion Association of the Chinese Academy of Sciences 2017303the Shandong Key Research Program 2019GSF108223

Figures(9)

  • Thiopeptide antibiotics are a class of natural products with polythiophene (oxazol) polypeptides, which are rich in sulfur and highly modified. They are produced by secondary metabolism of microorganisms and have good biological activities. Developing thiopeptides into clinic is currently a challenge partly due to their low aqueous solubility and associated poor bioavailability. On the basis of understanding the mechanism of their biosynthesis, the method of obtaining thiopeptide analogues via reasonable bioengineering has become the research focus of biologists. In this paper, the advances in structural modifications of bicyclic thiopeptides by taking thiostrepton and nosiheptide as representatives are reviewed.
  • 加载中
    1. [1]

      Arnison, P. G.; Bibb, M. J.; Bierbaum, G.; Bowers, A. A.; Bugni, T. S.; Bulaj, G.; Camarero, J. A.; Campopiano, D. J.; Challis, G. L.; Clardy, J.; Cotter, P. D.; Craik, D. J.; Dawson, M.; Dittmann, E.; Donadio, S.; Dorrestein, P. C.; Entian, K. D.; Fischbach, M. A.; Garavelli, J. S.; Goransson, U.; Gruber, C. W.; Haft, D. H.; Hemscheidt, T. K.; Hertweck, C.; Hill, C.; Horswill, A. R.; Jaspars, M.; Kelly, W. L.; Klinman, J. P.; Kuipers, O. P.; Link, A. J.; Liu, W.; Marahiel, M. A.; Mitchell, D. A.; Moll, G. N.; Moore, B. S.; Muller, R.; Nair, S. K.; Nes, I. F.; Norris, G. E.; Olivera, B. M.; Onaka, H.; Patchett, M. L.; Piel, J.; Reaney, M. J.; Rebuffat, S.; Ross, R. P.; Sahl, H. G.; Schmidt, E. W.; Selsted, M. E.; Severinov, K.; Shen, B.; Sivonen, K.; Smith, L.; Stein, T.; Sussmuth, R. D.; Tagg, J. R.; Tang, G. L.; Truman, A. W.; Vederas, J. C.; Walsh, C. T.; Walton, J. D.; Wenzel, S. C.; Willey, J. M.; van der Donk, W. A. Nat. Prod. Rep. 2013, 30, 108.  doi: 10.1039/C2NP20085F

    2. [2]

      Walsh, C. T. Science 2004, 303, 1805.  doi: 10.1126/science.1094318

    3. [3]

      Yang, X.; van der Donk, W. A. Chem. Eur. J. 2013, 19, 7662.  doi: 10.1002/chem.201300401

    4. [4]

      Bagley, M. C.; Dale, J. W.; Merritt, E. A.; Xiong, X. Chem. Rev. 2005, 105, 685.  doi: 10.1021/cr0300441

    5. [5]

      Ortega, M. A.; van der Donk, W. A. Cell Chem. Biol. 2016, 23, 31.  doi: 10.1016/j.chembiol.2015.11.012

    6. [6]

      Tl, S. U. Br. J. Exp. Pathol. 1948, 29, 473.

    7. [7]

      Li, C.; Kelly, W. L. Nat. Prod. Rep. 2010, 27, 153.  doi: 10.1039/B922434C

    8. [8]

      Hensens, O. D.; Albers-Schönberg, G. Tetrahedron Lett. 1978, 19, 3649.  doi: 10.1016/S0040-4039(01)95020-8

    9. [9]

      Li, J.; Qu, X.; He, X.; Duan, L.; Wu, G.; Bi, D.; Deng, Z.; Liu, W.; Ou, H. PLoS One 2012, 7, e45878.  doi: 10.1371/journal.pone.0045878

    10. [10]

      Vandeputte, J.; Dutcher, J. D. Antibiot. Annu. 1955~1956, 560.

    11. [11]

      Trejo, W. H.; Dean, L. D.; Pluscec, J.; Meyers, E.; Brown, W. E. J. J. Antibiot (Tokyo) 1977, 30, 639.  doi: 10.7164/antibiotics.30.639

    12. [12]

      (a) Anderson, B.; Hodgkin, D. C.; Viswamitra, M. A. Nature 1970, 225, 233.
      (b) Hensens, O. D.; Albers-Schönberg, G. J. Antibiot (Tokyo) 1983, 36, 814.
      (c) Hensens, O. D.; Albers-Schönberg, G. J. Antibiot (Tokyo) 1983, 36, 832.
      (d) Hensens, O. D.; Albers-Schonberg, G.; Anderson, B. F. J. Antibiot (Tokyo) 1983, 36, 799.

    13. [13]

      Benazet, F.; Cartier, M.; Florent, J.; Godard, C.; Ninet, L. Experientia 1980, 36, 414.  doi: 10.1007/BF01975121

    14. [14]

      Depaire, H.; Thomas, J. P.; Brun, A.; Olesker, A.; Lukacs, G. Tetrahedron Lett. 1977, 18, 1397.  doi: 10.1016/S0040-4039(01)93054-0

    15. [15]

      Bhat, U. G.; Halasi, M.; Gartel, A. L. PLoS One 2009, 4, e6593.  doi: 10.1371/journal.pone.0006593

    16. [16]

      Rogers, M. J.; Cundliffe, E.; Mccutchan, T. F. Antimicrob. Agents Chemother. 1998, 42, 715.  doi: 10.1128/AAC.42.3.715

    17. [17]

      (a) Naidu, B. N.; Sorenson, M. E.; Zhang, Y.; Kim, O. K.; Matiskella, J. D.; Wichtowski, J. A.; Connolly, T. P.; Li, W.; Lam, K. S.; Bronson, J. J. Bioorg. Med. Chem. Lett. 2004, 14, 5573.
      (b) Zhang, C.; Herath, K.; Jayasuriya, H.; Ondeyka, J. G.; Zink, D. L.; Occi, J.; Birdsall, G.; Venugopal, J.; Ushio, M.; Burgess, B. J. Nat. Prod. 2009, 72, 841.
      (c) Zhang, C.; Occi, J.; Masurekar, P.; Barrett, J. F.; Zink, D. L.; Smith, S.; Onishi, R.; Ha, S.; Salazar, O.; Genilloud, O. J. Am. Chem. Soc. 2008, 130, 12102.

    18. [18]

      (a) Xing, Y.; Draper, D. E. Biochemistry 1996, 35, 1581.
      (b) Blyn, L. B.; Risen, L. M.; Griffey, R. H.; Draper, D. E. Nucleic Acids Res. 2000, 28, 1778.
      (c) Wimberly, B. T.; Guymon, R.; McCutcheon, J. P.; White, S. W.; Ramakrishnan, V. Cell 1999, 97, 491.
      (d) Lentzen, G.; Klinck, R.; Matassova, N.; Aboul-ela, F.; Murchie, A. I. Chem. Biol. 2003, 10, 769.
      (e) Harms, J. M.; Wilson, D. N.; Schluenzen, F.; Connell, S. R.; Fucini, P. Mol. Cell 2008, 30, 26.
      (f) Bo, T. P.; Leviev, I.; Mankin, A. S.; Garrett, R. A. J. Mol. Biol. 1998, 276, 391.
      (g) Gonzalez, R. L.; Chu, S.; Puglisi, J. D. RNA (New York, N. Y.) 2007, 13, 2091.

    19. [19]

      Zheng, Q.; Wang, Q.; Wang, S.; Wu, J.; Gao, Q.; Liu, W. Chem. Biol. 2015, 22, 1002.  doi: 10.1016/j.chembiol.2015.06.019

    20. [20]

      Houck, D. R.; Chen, L. C.; Keller, P. J.; Beale, J. M.; Floss, H. G. J. Am. Chem. Soc. 1988, 110, 5800.  doi: 10.1021/ja00225a035

    21. [21]

      Houck, D. R.; Chen, L. C.; Keller, P. J.; Beale, J. M.; Floss, H. G. J. Am. Chem. Soc. 1993, 115, 7992.  doi: 10.1021/ja00071a009

    22. [22]

      Yu, Y.; Duan, L.; Zhang, Q.; Liao, R.; Ding, Y.; Pan, H.; Evelyn, W. P.; Tang, G. L.; Shen, B.; Liu, W. ACS Chem. Biol. 2009, 4, 855.  doi: 10.1021/cb900133x

    23. [23]

      (a) Liao, R.; Duan, L.; Lei, C.; Pan, H.; Ding, Y.; Zhang, Q.; Chen, D.; Shen, B.; Yu, Y.; Liu, W. Chem. Biol. 2009, 16, 141.
      (b) Kelly, W. L.; Pan, L.; Li, C. J. Am. Chem. Soc. 2009, 131, 4327.

    24. [24]

      Morris, R. P.; Leeds, J. A.; Naegeli, H. U.; Oberer, L.; Memmert, K.; Weber, E.; LaMarche, M. J.; Parker, C. N.; Burrer, N.; Esterow, S.; Hein, A. E.; Schmitt, E. K.; Krastel, P. J. Am. Chem. Soc. 2009, 131, 5946.  doi: 10.1021/ja900488a

    25. [25]

      Hudson, G. A.; Zhang, Z.; Tietz, J. I.; Mitchell, D. A.; van der Donk, W. A. J. Am. Chem. Soc. 2015, 137, 16012.  doi: 10.1021/jacs.5b10194

    26. [26]

      Zhang, Q.; Li, Y. X.; Chen, D. D.; Yu, Y.; Duan, L.; Shen, B.; Liu, W. Nat. Chem. Biol. 2011, 7, 154.  doi: 10.1038/nchembio.512

    27. [27]

      Sicoli, G.; Mouesca, J. M.; Zeppieri, L.; Amara, P.; Martin, L.; Barra, A. L.; Fontecilla Camps, J. C.; Gambarelli, S.; Nicolet, Y. Science 2016, 351, 1320.  doi: 10.1126/science.aad8995

    28. [28]

      Qiu, Y. P.; Du, Y. N.; Zhang, F.; Liao, R. J.; Zhou, S. X.; Peng, C.; Guo, Y. L.; Liu, W. J. Am. Chem. Soc. 2017, 139, 18186.  doi: 10.1021/jacs.7b11367

    29. [29]

      Qiu, Y. P.; Du, Y. N.; Wang, S. F.; Zhou, S. X.; Guo, Y. L.; Liu, W. Org. Lett. 2019, 21, 1502.  doi: 10.1021/acs.orglett.9b00293

    30. [30]

      Wang, B.; LaMattina, J. W.; Marshall, S. L.; Booker, S. J. J. Am. Chem. Soc. 2019, 141, 5788.  doi: 10.1021/jacs.8b13157

    31. [31]

      Duan, L.; Wang, S.; Liao, R.; Liu, W. Chem. Biol. 2012, 19, 443.  doi: 10.1016/j.chembiol.2012.02.008

    32. [32]

      Liu, W. Y.; Ma, M.; Xue, Y. J.; Liu, N.; Wang, S. Z.; Chen, Y. J. ChemBioChem 2013, 14, 573.  doi: 10.1002/cbic.201200681

    33. [33]

      Wang, S. Z.; Zheng, X. L.; Pan, Q.; Chen, Y. J. RSC Adv. 2016, 6, 94643.  doi: 10.1039/C6RA20302G

    34. [34]

      Kwok, M. M.; Myatt, S. S.; Marson, C. M.; Coombes, R. C.; Constantinidou, D.; Lam, W. F. Mol. Cancer Ther. 2008, 7, 2022.  doi: 10.1158/1535-7163.MCT-08-0188

    35. [35]

      Li, C.; Zhang, F.; Kelly, W. L. Chem. Commun. 2012, 48, 558.  doi: 10.1039/C1CC14281J

    36. [36]

      Zhang, F.; Li, C.; Kelly, W. L. ACS Chem. Biol. 2015, 11, 415.

    37. [37]

      Zhang, F.; Kelly, W. L. ACS Chem. Biol. 2015, 10, 998.  doi: 10.1021/cb5007745

    38. [38]

      Guo, H.; Wang, J.; Li, Y. M.; Yu, Y.; Zheng, Q. F.; Wu, J. Q.; Liu, W. Chem. Sci. 2014, 5, 240.  doi: 10.1039/C3SC52015C

    39. [39]

      Duan, P. P.; Zheng, Q. F.; Lin, Z.; Wang, S. F.; Chen, D. D.; Liu, W. Org. Chem. Front. 2016, 3, 1254.  doi: 10.1039/C6QO00320F

    40. [40]

      Liu, W. Y.; Xue, Y. J.; Ma, M.; Wang, S. Z.; Liu, N.; Chen, Y. J. ChemBioChem 2013, 14, 1544.  doi: 10.1002/cbic.201300427

    41. [41]

      Bai, X. B.; Guo, H.; Chen, D. D.; Yang, Q.; Tao, J.; Liu, W. Org. Chem. Front. 2020, 7, 584.  doi: 10.1039/C9QO01328H

    42. [42]

      Liao, R. J.; Liu, W. J. Am. Chem. Soc. 2011, 133, 2852.  doi: 10.1021/ja1111173

    43. [43]

      Liu, J.; Lin, Z.; Li, Y.; Zheng, Q.; Chen, D.; Liu, W. Org. Biomol. Chem. 2019, 17, 3727.  doi: 10.1039/C9OB00402E

    44. [44]

      (a) Liu, J.; Lin, Z.; Chen, H.; Guo, H.; Tao, J.; Liu, W. Chin. J. Chem. 2019, 37, 35.
      (b) Zheng, Q. F.; Wang, S. F.; Liao, R. J.; Liu, W. ACS Chem. Biol. 2016, 11, 2673.

    45. [45]

      Wang, S. F.; Zheng, Q. F.; Wang, J. F.; Zhao, Z. X.; Li, Q. Y.; Yu, Y. S.; Wang, R. X.; Liu, W. Org. Chem. Front. 2015, 2, 106.  doi: 10.1039/C4QO00288A

    46. [46]

      Wang, J.; Lin, Z.; Bai, X. B.; Tao, J.; Liu, W. Org. Chem. Front. 2019, 6, 1194.  doi: 10.1039/C9QO00219G

    47. [47]

      Wang, S. F.; Zheng, Q. F.; Wang, J. F.; Chen, D. D.; Yu, Y. S.; Wen, L. Org. Chem. Front. 2016, 3, 496.  doi: 10.1039/C5QO00433K

    48. [48]

      Zhang, E.; Guo, H.; Chen, D.; Yang, Q.; Fan, Y.; Yin, Y.; Wang, W.; Chen, D.; Wang, S.; Liu, W. Org. Biomol. Chem. 2020, 18, 4051.  doi: 10.1039/D0OB00084A

  • 加载中
    1. [1]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    4. [4]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    5. [5]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    6. [6]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    7. [7]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    10. [10]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    11. [11]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    12. [12]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    15. [15]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    16. [16]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    17. [17]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    18. [18]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    19. [19]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    20. [20]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

Metrics
  • PDF Downloads(6)
  • Abstract views(1503)
  • HTML views(210)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return