Progress in Structural Modification of Bicyclic Thiopeptide Antibiotics Based on Biosynthesis
- Corresponding author: Wang Shoufeng, chm_wangsf@ujn.edu.cn Liu Wen, wliu@mail.sioc.ac.cn
Citation:
Zhang E, Chen Dandan, Wang Shoufeng, Liu Wen. Progress in Structural Modification of Bicyclic Thiopeptide Antibiotics Based on Biosynthesis[J]. Chinese Journal of Organic Chemistry,
;2020, 40(10): 3120-3131.
doi:
10.6023/cjoc202005071
Arnison, P. G.; Bibb, M. J.; Bierbaum, G.; Bowers, A. A.; Bugni, T. S.; Bulaj, G.; Camarero, J. A.; Campopiano, D. J.; Challis, G. L.; Clardy, J.; Cotter, P. D.; Craik, D. J.; Dawson, M.; Dittmann, E.; Donadio, S.; Dorrestein, P. C.; Entian, K. D.; Fischbach, M. A.; Garavelli, J. S.; Goransson, U.; Gruber, C. W.; Haft, D. H.; Hemscheidt, T. K.; Hertweck, C.; Hill, C.; Horswill, A. R.; Jaspars, M.; Kelly, W. L.; Klinman, J. P.; Kuipers, O. P.; Link, A. J.; Liu, W.; Marahiel, M. A.; Mitchell, D. A.; Moll, G. N.; Moore, B. S.; Muller, R.; Nair, S. K.; Nes, I. F.; Norris, G. E.; Olivera, B. M.; Onaka, H.; Patchett, M. L.; Piel, J.; Reaney, M. J.; Rebuffat, S.; Ross, R. P.; Sahl, H. G.; Schmidt, E. W.; Selsted, M. E.; Severinov, K.; Shen, B.; Sivonen, K.; Smith, L.; Stein, T.; Sussmuth, R. D.; Tagg, J. R.; Tang, G. L.; Truman, A. W.; Vederas, J. C.; Walsh, C. T.; Walton, J. D.; Wenzel, S. C.; Willey, J. M.; van der Donk, W. A. Nat. Prod. Rep. 2013, 30, 108.
doi: 10.1039/C2NP20085F
Walsh, C. T. Science 2004, 303, 1805.
doi: 10.1126/science.1094318
Yang, X.; van der Donk, W. A. Chem. Eur. J. 2013, 19, 7662.
doi: 10.1002/chem.201300401
Bagley, M. C.; Dale, J. W.; Merritt, E. A.; Xiong, X. Chem. Rev. 2005, 105, 685.
doi: 10.1021/cr0300441
Ortega, M. A.; van der Donk, W. A. Cell Chem. Biol. 2016, 23, 31.
doi: 10.1016/j.chembiol.2015.11.012
Tl, S. U. Br. J. Exp. Pathol. 1948, 29, 473.
Li, C.; Kelly, W. L. Nat. Prod. Rep. 2010, 27, 153.
doi: 10.1039/B922434C
Hensens, O. D.; Albers-Schönberg, G. Tetrahedron Lett. 1978, 19, 3649.
doi: 10.1016/S0040-4039(01)95020-8
Li, J.; Qu, X.; He, X.; Duan, L.; Wu, G.; Bi, D.; Deng, Z.; Liu, W.; Ou, H. PLoS One 2012, 7, e45878.
doi: 10.1371/journal.pone.0045878
Vandeputte, J.; Dutcher, J. D. Antibiot. Annu. 1955~1956, 560.
Trejo, W. H.; Dean, L. D.; Pluscec, J.; Meyers, E.; Brown, W. E. J. J. Antibiot (Tokyo) 1977, 30, 639.
doi: 10.7164/antibiotics.30.639
(a) Anderson, B.; Hodgkin, D. C.; Viswamitra, M. A. Nature 1970, 225, 233.
(b) Hensens, O. D.; Albers-Schönberg, G. J. Antibiot (Tokyo) 1983, 36, 814.
(c) Hensens, O. D.; Albers-Schönberg, G. J. Antibiot (Tokyo) 1983, 36, 832.
(d) Hensens, O. D.; Albers-Schonberg, G.; Anderson, B. F. J. Antibiot (Tokyo) 1983, 36, 799.
Benazet, F.; Cartier, M.; Florent, J.; Godard, C.; Ninet, L. Experientia 1980, 36, 414.
doi: 10.1007/BF01975121
Depaire, H.; Thomas, J. P.; Brun, A.; Olesker, A.; Lukacs, G. Tetrahedron Lett. 1977, 18, 1397.
doi: 10.1016/S0040-4039(01)93054-0
Bhat, U. G.; Halasi, M.; Gartel, A. L. PLoS One 2009, 4, e6593.
doi: 10.1371/journal.pone.0006593
Rogers, M. J.; Cundliffe, E.; Mccutchan, T. F. Antimicrob. Agents Chemother. 1998, 42, 715.
doi: 10.1128/AAC.42.3.715
(a) Naidu, B. N.; Sorenson, M. E.; Zhang, Y.; Kim, O. K.; Matiskella, J. D.; Wichtowski, J. A.; Connolly, T. P.; Li, W.; Lam, K. S.; Bronson, J. J. Bioorg. Med. Chem. Lett. 2004, 14, 5573.
(b) Zhang, C.; Herath, K.; Jayasuriya, H.; Ondeyka, J. G.; Zink, D. L.; Occi, J.; Birdsall, G.; Venugopal, J.; Ushio, M.; Burgess, B. J. Nat. Prod. 2009, 72, 841.
(c) Zhang, C.; Occi, J.; Masurekar, P.; Barrett, J. F.; Zink, D. L.; Smith, S.; Onishi, R.; Ha, S.; Salazar, O.; Genilloud, O. J. Am. Chem. Soc. 2008, 130, 12102.
(a) Xing, Y.; Draper, D. E. Biochemistry 1996, 35, 1581.
(b) Blyn, L. B.; Risen, L. M.; Griffey, R. H.; Draper, D. E. Nucleic Acids Res. 2000, 28, 1778.
(c) Wimberly, B. T.; Guymon, R.; McCutcheon, J. P.; White, S. W.; Ramakrishnan, V. Cell 1999, 97, 491.
(d) Lentzen, G.; Klinck, R.; Matassova, N.; Aboul-ela, F.; Murchie, A. I. Chem. Biol. 2003, 10, 769.
(e) Harms, J. M.; Wilson, D. N.; Schluenzen, F.; Connell, S. R.; Fucini, P. Mol. Cell 2008, 30, 26.
(f) Bo, T. P.; Leviev, I.; Mankin, A. S.; Garrett, R. A. J. Mol. Biol. 1998, 276, 391.
(g) Gonzalez, R. L.; Chu, S.; Puglisi, J. D. RNA (New York, N. Y.) 2007, 13, 2091.
Zheng, Q.; Wang, Q.; Wang, S.; Wu, J.; Gao, Q.; Liu, W. Chem. Biol. 2015, 22, 1002.
doi: 10.1016/j.chembiol.2015.06.019
Houck, D. R.; Chen, L. C.; Keller, P. J.; Beale, J. M.; Floss, H. G. J. Am. Chem. Soc. 1988, 110, 5800.
doi: 10.1021/ja00225a035
Houck, D. R.; Chen, L. C.; Keller, P. J.; Beale, J. M.; Floss, H. G. J. Am. Chem. Soc. 1993, 115, 7992.
doi: 10.1021/ja00071a009
Yu, Y.; Duan, L.; Zhang, Q.; Liao, R.; Ding, Y.; Pan, H.; Evelyn, W. P.; Tang, G. L.; Shen, B.; Liu, W. ACS Chem. Biol. 2009, 4, 855.
doi: 10.1021/cb900133x
(a) Liao, R.; Duan, L.; Lei, C.; Pan, H.; Ding, Y.; Zhang, Q.; Chen, D.; Shen, B.; Yu, Y.; Liu, W. Chem. Biol. 2009, 16, 141.
(b) Kelly, W. L.; Pan, L.; Li, C. J. Am. Chem. Soc. 2009, 131, 4327.
Morris, R. P.; Leeds, J. A.; Naegeli, H. U.; Oberer, L.; Memmert, K.; Weber, E.; LaMarche, M. J.; Parker, C. N.; Burrer, N.; Esterow, S.; Hein, A. E.; Schmitt, E. K.; Krastel, P. J. Am. Chem. Soc. 2009, 131, 5946.
doi: 10.1021/ja900488a
Hudson, G. A.; Zhang, Z.; Tietz, J. I.; Mitchell, D. A.; van der Donk, W. A. J. Am. Chem. Soc. 2015, 137, 16012.
doi: 10.1021/jacs.5b10194
Zhang, Q.; Li, Y. X.; Chen, D. D.; Yu, Y.; Duan, L.; Shen, B.; Liu, W. Nat. Chem. Biol. 2011, 7, 154.
doi: 10.1038/nchembio.512
Sicoli, G.; Mouesca, J. M.; Zeppieri, L.; Amara, P.; Martin, L.; Barra, A. L.; Fontecilla Camps, J. C.; Gambarelli, S.; Nicolet, Y. Science 2016, 351, 1320.
doi: 10.1126/science.aad8995
Qiu, Y. P.; Du, Y. N.; Zhang, F.; Liao, R. J.; Zhou, S. X.; Peng, C.; Guo, Y. L.; Liu, W. J. Am. Chem. Soc. 2017, 139, 18186.
doi: 10.1021/jacs.7b11367
Qiu, Y. P.; Du, Y. N.; Wang, S. F.; Zhou, S. X.; Guo, Y. L.; Liu, W. Org. Lett. 2019, 21, 1502.
doi: 10.1021/acs.orglett.9b00293
Wang, B.; LaMattina, J. W.; Marshall, S. L.; Booker, S. J. J. Am. Chem. Soc. 2019, 141, 5788.
doi: 10.1021/jacs.8b13157
Duan, L.; Wang, S.; Liao, R.; Liu, W. Chem. Biol. 2012, 19, 443.
doi: 10.1016/j.chembiol.2012.02.008
Liu, W. Y.; Ma, M.; Xue, Y. J.; Liu, N.; Wang, S. Z.; Chen, Y. J. ChemBioChem 2013, 14, 573.
doi: 10.1002/cbic.201200681
Wang, S. Z.; Zheng, X. L.; Pan, Q.; Chen, Y. J. RSC Adv. 2016, 6, 94643.
doi: 10.1039/C6RA20302G
Kwok, M. M.; Myatt, S. S.; Marson, C. M.; Coombes, R. C.; Constantinidou, D.; Lam, W. F. Mol. Cancer Ther. 2008, 7, 2022.
doi: 10.1158/1535-7163.MCT-08-0188
Li, C.; Zhang, F.; Kelly, W. L. Chem. Commun. 2012, 48, 558.
doi: 10.1039/C1CC14281J
Zhang, F.; Li, C.; Kelly, W. L. ACS Chem. Biol. 2015, 11, 415.
Zhang, F.; Kelly, W. L. ACS Chem. Biol. 2015, 10, 998.
doi: 10.1021/cb5007745
Guo, H.; Wang, J.; Li, Y. M.; Yu, Y.; Zheng, Q. F.; Wu, J. Q.; Liu, W. Chem. Sci. 2014, 5, 240.
doi: 10.1039/C3SC52015C
Duan, P. P.; Zheng, Q. F.; Lin, Z.; Wang, S. F.; Chen, D. D.; Liu, W. Org. Chem. Front. 2016, 3, 1254.
doi: 10.1039/C6QO00320F
Liu, W. Y.; Xue, Y. J.; Ma, M.; Wang, S. Z.; Liu, N.; Chen, Y. J. ChemBioChem 2013, 14, 1544.
doi: 10.1002/cbic.201300427
Bai, X. B.; Guo, H.; Chen, D. D.; Yang, Q.; Tao, J.; Liu, W. Org. Chem. Front. 2020, 7, 584.
doi: 10.1039/C9QO01328H
Liao, R. J.; Liu, W. J. Am. Chem. Soc. 2011, 133, 2852.
doi: 10.1021/ja1111173
Liu, J.; Lin, Z.; Li, Y.; Zheng, Q.; Chen, D.; Liu, W. Org. Biomol. Chem. 2019, 17, 3727.
doi: 10.1039/C9OB00402E
(a) Liu, J.; Lin, Z.; Chen, H.; Guo, H.; Tao, J.; Liu, W. Chin. J. Chem. 2019, 37, 35.
(b) Zheng, Q. F.; Wang, S. F.; Liao, R. J.; Liu, W. ACS Chem. Biol. 2016, 11, 2673.
Wang, S. F.; Zheng, Q. F.; Wang, J. F.; Zhao, Z. X.; Li, Q. Y.; Yu, Y. S.; Wang, R. X.; Liu, W. Org. Chem. Front. 2015, 2, 106.
doi: 10.1039/C4QO00288A
Wang, J.; Lin, Z.; Bai, X. B.; Tao, J.; Liu, W. Org. Chem. Front. 2019, 6, 1194.
doi: 10.1039/C9QO00219G
Wang, S. F.; Zheng, Q. F.; Wang, J. F.; Chen, D. D.; Yu, Y. S.; Wen, L. Org. Chem. Front. 2016, 3, 496.
doi: 10.1039/C5QO00433K
Zhang, E.; Guo, H.; Chen, D.; Yang, Q.; Fan, Y.; Yin, Y.; Wang, W.; Chen, D.; Wang, S.; Liu, W. Org. Biomol. Chem. 2020, 18, 4051.
doi: 10.1039/D0OB00084A
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
Chen LU , Qinlong HONG , Haixia ZHANG , Jian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
Hong CAI , Jiewen WU , Jingyun LI , Lixian CHEN , Siqi XIAO , Dan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
Qiaowen CHANG , Ke ZHANG , Guangying HUANG , Nuonan LI , Weiping LIU , Fuquan BAI , Caixian YAN , Yangyang FENG , Chuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311
Hongjie SHEN , Haozhe MIAO , Yuhe YANG , Yinghua LI , Deguang HUANG , Xiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
Yuan GAO , Yiming LIU , Chunhui WANG , Zhe HAN , Chaoyue FAN , Jie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271
Hexing SONG , Zan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
. . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.
Hongyao Li , Youyan Liu , Luwei Dai , Min Yang , Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104
MIA units are marked in blue, and QA units are marked in red
(A) Interface view of the 50S subunit with the thiopeptide binding site boxed. Enlargement of boxed region reveals that the thiopeptides Thio (cyan) and Nosi (green) bind within a cleft between the N-terminal domain (NTD) of r-protein L11 (yellow) and the 23S rRNA H43 and H44 (orange). (B) Difference electron density maps with Thio, L11-NTD, and H44 colored as in A). (C) Difference electron density maps with Nosi, L11-NTD, and H44 colored as in A)
(A) Isotope labeling of NOS; (B) Isotope labeling of TSR
(A) Formation mechanism of MIA unit; (B) Upload mechanism of MIA unit
(A) Formation mechanism of QA unit; (B) Upload mechanism of QA unit