Citation: Leung Man Pan, Yeung Chung Chiu, Choy Pui Ying, So Chau Ming, Kwong Fuk Yee. Facile One-Pot Assembly of New 5-Substituted P, O-Type Indolylphosphine Ligands for Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling of Aryl Chlorides[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3338-3346. doi: 10.6023/cjoc202005069 shu

Facile One-Pot Assembly of New 5-Substituted P, O-Type Indolylphosphine Ligands for Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling of Aryl Chlorides

  • Corresponding author: Kwong Fuk Yee, fykwong@cuhk.edu.hk
  • Received Date: 26 May 2020
    Revised Date: 3 July 2020
    Available Online: 15 July 2020

    Fund Project: the General Research Fund (GRF) from Research Grants Council of Hong Kong (RGC) 14304519Project supported by the Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515011357), and the General Research Fund (GRF) from Research Grants Council of Hong Kong (RGC) (No. 14304519)the Guangdong Basic and Applied Basic Research Foundation 2019A1515011357

Figures(3)

  • A series of P, O-type indolylphosphine ligands with different substituted variants have been synthesized by a simple one-pot protocol from readily available and inexpensive materials. These ligands show "substituent effect" with respected to the efficacy in promoting palladium-catalyzed Suzuki-Miyaura cross-coupling of aryl chlorides. This new Pd/L1 catalyst system particularly allows the catalyst loading reaching the level of 0.01 mol% Pd.
  • 加载中
    1. [1]

      For selected books, see:
      (a) Negishi, E. Handbook of Organopalladium Chemistry for Organic Synthesis, Vols. 1~2, Wiley-Interscience, New York, 2002.
      (b) de Meijere, A.; Diederich, F. Metal-Catalyzed Cross-Coupling Reactions, Vols. 1~2, Wiley-VCH, Weinheim, 2004.
      (c) Ackermann, L. Modern Arylation Methods, Wiley-VCH, Weinheim, 2009. For selected reviews, see:
      (d) Corbet, J.-P.; Mignani, G. Chem. Rev. 2006, 106, 2651.
      (e) Johansson Seechurn, C. C. C.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem., Int. Ed. 2012, 51, 5062.
      (f) Biffis, A.; Centomo, P.; Del Zotto, A.; Zecca, M. Chem. Rev. 2018, 118, 2249.
      (g) Zhang, Y.-F.; Shi, Z.-J. Acc. Chem. Res. 2019, 52, 161.

    2. [2]

      (a) Magano, J.; Dunetz, J. R. Chem. Rev. 2011, 111, 2177.
      (b) Biteau, N.; Hervin, V.; Roy, V.; Agrofoglio, L. A. In Palladium-Catalyzed Modification of Nucleosides, Nucleotides and Oligonucleotides, Vol. 1, Eds.: Kapdi, A. R.; Maiti, D.; Sanghvi, Y. S., Elsevier, Amsterdam, Netherlands, 2018, p. 37.
      (c) Devendar, P.; Qu, R.-Y.; Kang, W.-M.; He, B.; Yang, G.-F. J. Agric. Food Chem. 2018, 66, 8914.

    3. [3]

      For selected book, see:
      (a) Stradiotto, M.; Lundgren, R. J. Ligand Design in Metal Chemistry, John Wiley & Sons, Hoboken, NJ, 2016. For selected articles, see:
      (b) Valente, C.; Calimsiz, S.; Hoi, K. H.; Mallik, D.; Sayah, M.; Organ, M. G. Angew. Chem., Int. Ed. 2012, 51, 3314.
      (c) Izquierdo, F.; Manzini, S.; Nolan, S. P. Chem. Commun. 2014, 50, 14926.
      (d) Wong, S. M.; Yuen, O. Y.; Choy, P. Y.; Kwong, F. Y. Coord. Chem. Rev. 2015, 293-294, 158.
      (e) Li, C.; Chen, D.; Tang, W. Synlett 2016, 2183.

    4. [4]

      Fu, G. C. Acc. Chem. Res. 2008, 41, 1555.  doi: 10.1021/ar800148f

    5. [5]

      Hartwig, J. F. Synlett 1997, 329.

    6. [6]

      (a) Surry, D. S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 6338.
      (b) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461.

    7. [7]

      Ackermann, L.; Potukuchi, H. K.; Althammer, A.; Born, R.; Mayer, P. Org. Lett. 2010, 12, 1004.  doi: 10.1021/ol1000186

    8. [8]

      Zapf, A.; Beller, M. Chem. Commun. 2005, 431.

    9. [9]

      (a) So, C. M.; Lau, C. P.; Kwong, F. Y. Angew. Chem., Int. Ed. 2008, 47, 8059.
      (b) So, C. M.; Chow, W. K.; Choy, P. Y.; Lau, C. P.; Kwong, F. Y. Chem.-Eur. J. 2010, 16, 7996.

    10. [10]

      Lundgren, R. J.; Hesp, K. D.; Stradiotto, M. Synlett 2011, 2443.

    11. [11]

      (a) Tang, W.; Capacci, A. G.; Wei, X.; Li, W.; White, A.; Patel, N. D.; Savoie, J.; Gao, J. J.; Rodriguez, S.; Qu, B.; Haddad, N.; Lu, B. Z.; Krishnamurthy, D.; Yee, N. K.; Senanayake, C. H. Angew. Chem., Int. Ed. 2010, 49, 5879.
      (b) Zhao, Q.; Li, C.; Senanayake, C. H.; Tang, W. Chem.-Eur. J. 2013, 19, 2261.

    12. [12]

      Liu, D.; Gao, W.; Dai, Q.; Zhang, X. Org. Lett. 2005, 7, 4907.  doi: 10.1021/ol051844w

    13. [13]

      Li, P.; Lu, B.; Fu, C.; Ma, S. Adv. Synth. Catal. 2013, 355, 1255.  doi: 10.1002/adsc.201300207

    14. [14]

      Handa, S.; Andersson, M. P.; Gallou, F.; Reilly, J.; Lipshutz, B. H. Angew. Chem., Int. Ed. 2016, 55, 4914.  doi: 10.1002/anie.201510570

    15. [15]

      (a) Bhilare, S.; Gayakhe, V.; Ardhapure, A. V.; Sanghavi, Y. S.; Schulzke, C.; Borozdina, Y.; Kapdi, A. R. RSC Adv. 2016, 6, 83820.
      (b) Girase, T. R.; Kapdi, A. R. Chem. Asian J. 2019, 14, 2611.

    16. [16]

      For Hiesro and Doucet's selected reference, see:
      (a) Hierso, J.-C.; Fihri, A.; Amardeil, R.; Meunier, P.; Doucet, H.; Santelli, M.; Donnadieu, B. Organometallics 2003, 22, 4490. For Hoshi and Hagiwara's selected reference, see:
      (b) Hoshi, T.; Nakazawa, T.; Saitoh, I.; Mori, A.; Suzuki, T.; Sakai, J.-I.; Hagiwara, H. Org. Lett. 2008, 10, 2063. For Yu and Liu's selected reference, see:
      (c) Mao, S.-L.; Sun, Y.; Yu, G.-A.; Zhao, C.; Han, Z.-J.; Yuan, J.; Zhu, X.; Yang, Q.; Liu, S.-H. Org. Biomol. Chem. 2012, 10, 9410. For Doherty's selected reference, see:
      (d) Doherty, S.; Smyth, C. H.; Knight, J. G.; Hashmi, S. A. K. Nat. Protocols 2012, 7, 1870. For Fossey's selected reference, see:
      (e) Zhao, Y.; van Nguyen, H.; Male, L.; Craven, P.; Buckley, B. R.; Fossey, J. S. Organometallics 2018, 37, 4224.

    17. [17]

      Wong, S. M.; So, C. M.; Chung, K. H.; Lau, C. P.; Kwong, F. Y. Eur. J. Org. Chem. 2012, 4172.

    18. [18]

      For selected references, see:
      (a) Wang, Z.; Guo, W. In Homogeneous Catalysis for Unreactive Bond Activation, Ed.: Shi, Z., John Wiley & Sons, Hoboken, NJ, 2015, p. 1.
      (b) Braunstein, P.; Naud, F. Angew. Chem., Int. Ed. 2001, 40, 680.
      (c) Weng, Z.; Teo, S.; Hor, T. S. A. Acc. Chem. Res. 2007, 40, 676.
      (d) Zhang, W.-H.; Chien, S. W.; Hor, T. S. A. Coord. Chem. Rev. 2011, 255, 1991.
      (e) Guram, A. S. Org. Process Res. Dev. 2016, 20, 1754.

    19. [19]

      Kwong, F. Y.; Chan, A. S. C. Synlett 2008, 1440.

    20. [20]

      (a) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 9722.
      (b) Amatore, C.; Fuxa, A.; Jutand, A. Chem.-Eur. J. 2000, 6, 1474.

    21. [21]

      (a) Bei, X.; Crevier, T.; Guram, A. S.; Jandeleit, B.; Powers, T. S.; Turner, H. W.; Uno, T.; Weinberg, W. H. Tetrahedron Lett. 1999, 40, 3855.
      (b) Bei, X.; Turner, H. W.; Weinberg, W. H.; Guram, A. S.; Petersen, J. L. J. Org. Chem. 1999, 64, 6797.

    22. [22]

      Teo, S.; Weng, Z.; Hor, T. S. A. Organometallics 2006, 25, 1199.  doi: 10.1021/om050791j

    23. [23]

      (a) Kwong, F. Y.; Lam, W. H.; Yeung, C. H.; Chan, K. S.; Chan, A. S. C. Chem. Commun. 2004, 1922.
      (b) Chen, G.; Lam, W. H.; Fok, W. S.; Lee, H. W.; Kwong, F. Y. Chem. Asian J. 2007, 2, 306.
      (c) So, C. M.; Yeung, C. C.; Lau, C. P.; Kwong, F. Y. J. Org. Chem. 2008, 73, 7803.

    24. [24]

      (a) Dai, W.-M.; Li, Y.; Zhang, Y.; Lai, K. W.; Wu, J. Tetrahedron Lett. 2004, 45, 1999.
      (b) Dai, W.-M.; Zhang, Y. Tetrahedron Lett. 2005, 46, 1377.
      (c) Dai, W.-M.; Li, Y.; Zhang, Y.; Yue, C.; Wu, J. Chem.-Eur. J. 2008, 14, 5538.

    25. [25]

      Ullah, E.; McNulty, J.; Robertson, A. Tetrahedron Lett. 2009, 50, 5599.  doi: 10.1016/j.tetlet.2009.07.088

    26. [26]

      (a) Schaarschmidt, D.; Lang, H. Eur. J. Inorg. Chem. 2010, 4811.
      (b) Schaarschmidt, D.; Lang, H. ACS Catal. 2011, 1, 411.

    27. [27]

      (a) Chow, W. K.; So, C. M.; Lau, C. P.; Kwong, F. Y. J. Org. Chem. 2010, 75, 5109.
      (b) Wong, P. Y.; Chow, W. K.; Chung, K. H.; So, C. M.; Lau, C. P.; Kwong, F. Y. Chem. Commun. 2011, 47, 8328.
      (c) To, S. C.; Kwong, F. Y. Chem. Commun. 2011, 47, 5079.
      (d) Chow, W. K.; Yuen, O. Y.; So, C. M.; Wong, W. T.; Kwong, F. Y. J. Org. Chem. 2012, 77, 3543.
      (e) Leung, M. P.; Choy, P. Y.; Lai, W. I.; Gan, K. B.; Kwong, F. Y. Org. Process Res. Dev. 2019, 23, 1602.

    28. [28]

      Armarego, W. L. F. Purification of Laboratory Chemicals, Butterworth-Heinemann, Oxford, UK, 2017.

    29. [29]

      Choy, P. Y.; Yuen, O. Y.; Leung, M. P.; Chow, W. K.; Kwong, F. Y. Eur. J. Org. Chem. 2020, 2846.

    30. [30]

      Lee, H. W.; Lam, F. L.; So, C. M.; Lau, C. P.; Chan, A. S. C.; Kwong, F. Y. Angew. Chem., Int. Ed. 2009, 48, 7436.  doi: 10.1002/anie.200904033

    31. [31]

      Wu, Y.; Choy, P. Y.; Kwong, F. Y. Org. Biomol. Chem. 2014, 12, 6820.  doi: 10.1039/C4OB01211A

    32. [32]

      Chung, K. H.; So, C. M.; Wong, S. M.; Luk, C. H.; Zhou, Z.; Lau, C. P.; Kwong, F. Y. Chem. Commun. 2012, 48, 1967.  doi: 10.1039/c2cc15972d

    33. [33]

      McNulty, J.; Capretta, A.; Wilson, J.; Dyck, J.; Adjabeng, G.; Robertson, A. Chem. Commun. 2002, 1986.

    34. [34]

      So, C. M.; Lau, C. P.; Kwong, F. Y. Org. Lett. 2007, 9, 2795.  doi: 10.1021/ol070898y

    35. [35]

      Mingji, D.; Liang, B.; Wang, C.; You, Z.; Xiang, J.; Dong, G.; Chen, J.; Yang, Z. Adv. Synth. Catal. 2004, 346, 1669.  doi: 10.1002/adsc.200404165

    36. [36]

      Zhang, J.; Zhao, L.; Song, M.; Mak, T. C. W.; Wu, Y. J. Organomet. Chem. 2006, 691, 1301.  doi: 10.1016/j.jorganchem.2005.11.027

  • 加载中
    1. [1]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    2. [2]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    3. [3]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    4. [4]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    5. [5]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    6. [6]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    7. [7]

      Peng GuoShicheng DongXiang-Gui ZhangBing-Bin YangJun ZhuKe-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052

    8. [8]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    9. [9]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    10. [10]

      Xuling PanWei CaiYou Huang . Recent advances in phosphine-mediated sequential annulations. Chinese Chemical Letters, 2025, 36(5): 110628-. doi: 10.1016/j.cclet.2024.110628

    11. [11]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    12. [12]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    13. [13]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    14. [14]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    15. [15]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    16. [16]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    17. [17]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    18. [18]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    19. [19]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    20. [20]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

Metrics
  • PDF Downloads(4)
  • Abstract views(1036)
  • HTML views(123)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return