Citation: Zhu Haiqian, Shang Tianbo, Lu Zenghui, Luo Fang, Zhu Gangguo. Visible-Light Photocatalytic Remote Halo-difluoroalkylation of Thioalkynes[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3410-3419. doi: 10.6023/cjoc202005066 shu

Visible-Light Photocatalytic Remote Halo-difluoroalkylation of Thioalkynes

  • Corresponding author: Zhu Gangguo, gangguo@zjnu.cn
  • Received Date: 24 May 2020
    Revised Date: 6 June 2020
    Available Online: 11 June 2020

    Fund Project: the Education Department of Zhejiang Province Y201942955Project supported by the National Natural Science Foundation of China (No. 21672191), the Natural Science Foundation of Zhejiang Province (No. LZ20B020002) and the Education Department of Zhejiang Province (No. Y201942955)the Natural Science Foundation of Zhejiang Province LZ20B020002the National Natural Science Foundation of China 21672191

Figures(4)

  • Fluoroalkylated alkenes are of significant importance in life sciences and functional materials. The fluoroalkylation of alkynes offers an efficient method for the synthesis of functionalized fluoroalkylated alkenes. However, the current methods are often limited to 1, 2-difunctionalization, while the remote fluoroalkylative difunctionalization of alkynes has been rarely developed. Herein, a novel visible-light-induced remote halo-difluoroalkylation of thioalkynes is realized with difluoroalkyl halides as the radical source, forming distally halogenated (Z)-fluoroalkylated alkenes in moderate to high yields with excellent regio-, stereo-, and site-selectivity. The notable features of this reaction include the mild reaction conditions, broad substrate scope, concurrent formation of three new chemical bonds, and a thermodynamically less stable (Z)-alkene, thus enabling it a highly attractive method for organic synthesis. It represents a new advance on the direct C-H bond halogenation. Preliminary mechanistic studies indicate a cascade radical process involving the heteroatom-induced β-fluoroalkylation of C-C triple bonds, intramolecular 1, 5-hydrogen atom transfer (1, 5-HAT), single electron transfer (SET) oxidation and halide addition.
  • 加载中
    1. [1]

      For selected reviews, see: (a) Purser, S.; Moore, P. R. Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
      (b) O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308.

    2. [2]

    3. [3]

      (a) Long, Z.-Y.; Chen, Q.-Y. J. Org. Chem. 1999, 64, 4775.
      (b) Huang, X.-T.; Chen, Q.-Y. J. Org. Chem. 2001, 66, 4651.
      (c) Ke, M.; Feng, Q.; Yang, K.; Song, Q. Org. Chem. Front. 2016, 3, 150.
      (d) Feng, X.; Wang, X.; Chen, H.; Tang, X.; Guo, M.; Zhao, W.; Wang, G. Org. Biomol. Chem. 2018, 16, 2841.
      (e) Li, K.-K.; Zhang, X.-X.; Chen, J.-C.; Gang, Y.; Yang, C.-H.; Zhang, K.-Y.; Zhou, Y.-Y.; Fan, B.-M. Org. Lett. 2019, 21, 9914.

    4. [4]

      (a) He, Y.-T.; Wang, Q.; Li, L.-H.; Liu, X.-Y.; Xu, P.-F.; Liang, Y.-M. Org. Lett. 2015, 17, 5188.
      (b) He, Y.-T.; Li, L.-H.; Wang, Q.; Wu, W.; Liang, Y.-M. Org. Lett. 2016, 18, 5158.
      (c) Wang, Q.; Zheng, L.; He, Y.-T.; Liang, Y.-M. Chem. Commun. 2017, 53, 2814.
      (d) Zhang, Y.; Zhang, J.; Hu, B.; Ji, M.; Ye, S.; Zhu, G. Org. Lett. 2018, 20, 2988.
      (e) Liang, J.-Q.; Huang, G.-Z; Peng, P.; Zhang, T.-Y.; Wu, J.-J.; Wu, F.-H. Adv. Synth. Catal. 2018, 360, 2221.

    5. [5]

      Zhang, B.-S.; Gao, L.-Y.; Zhang, Z.; Wen, Y.-H.; Liang, Y.-M. Chem. Commun. 2018, 54, 1185.  doi: 10.1039/C7CC09083H

    6. [6]

      Xiang, Y.; Li, Y.; Kuang, Y.; Wu, J. Chem.-Eur. J. 2017, 23, 1032.  doi: 10.1002/chem.201605336

    7. [7]

      (a) Wang, S.; Zhang, J.; Kong, L.; Tan, Z.; Bai, Y.; Zhu, G. Org. Lett. 2018, 20, 5631.
      (b) Guo, W.-H.; Zhao, H.-Y.; Luo, Z.-J.; Zhang, S.; Zhang, X. ACS Catal. 2019, 9, 38.

    8. [8]

      Li, Y.; Li, H.; Hu, J. Tetrahedron 2009, 65, 478.  doi: 10.1016/j.tet.2008.11.011

    9. [9]

      Xu, T.; Cheung, C. W.; Hu, X. Angew. Chem., Int. Ed. 2014, 53, 4910.  doi: 10.1002/anie.201402511

    10. [10]

      Zhong, J.-J.; Yang, C.; Chang, X.-Y.; Zou, C.; Lu, W.; Che, C.-M. Chem. Commun. 2017, 53, 8948.  doi: 10.1039/C7CC03823B

    11. [11]

      Li, G.; Cao, Y.-X.; Luo, C.-G.; Su, Y.-M.; Li, Y.; Lan, Q.; Wang, X.-S. Org. Lett. 2016, 18, 4806.  doi: 10.1021/acs.orglett.6b02216

    12. [12]

      Wu, G.; von Wangelin, A. J. V. Chem. Sci. 2018, 9, 1795.  doi: 10.1039/C7SC04916A

    13. [13]

      Shang, T.; Zhang, J.; Zhang, Y.; Zhang, F.; Li, X.-S.; Zhu, G. Org. Lett. 2020, 22, 3667.  doi: 10.1021/acs.orglett.0c01163

    14. [14]

      Xiong, Z.; Zhang, F.; Yu, Y.; Tan, Z.; Zhu, G. Org. Lett. 2020, 22, 4088.  doi: 10.1021/acs.orglett.0c01147

    15. [15]

      For selected reviews on photocatalysis, see: (a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
      (b) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.
      (c) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
      (d) Matsui, J. K.; Lang, S. B.; Heitz, D. R.; Molander, G. A. ACS Catal. 2017, 7, 2563.

    16. [16]

      For selected reports on remote C-H halogention, see: (a) Kundu, R.; Ball, Z. T. Org. Lett. 2010, 12, 2460.
      (b) Liu, T.; Myers, M. C.; Yu, J.-Q. Angew. Chem., Int. Ed. 2017, 56, 306.
      (c) Herron, A. N.; Liu, D.; Xia, G.; Yu, J.-Q. J. Am. Chem. Soc. 2020, 142, 2766.
      (d) Short, M. A.; Blackburn, J. M.; Roizen, J. L. Angew. Chem., Int. Ed. 2018, 57, 296.

    17. [17]

      (a) Yang, Z.; Chen, X.; Kong, W.; Xia, S.; Zheng, R.; Luo, F.; Zhu, G. Org. Biomol. Chem. 2013, 11, 2175.
      (b) Zhu, G.; Kong, W.; Feng, H.; Qian, Z. J. Org. Chem. 2014, 79, 1786.

    18. [18]

      Nie, X.; Cheng, C.; Zhu, G. Angew. Chem., Int. Ed. 2017, 56, 1898.  doi: 10.1002/anie.201611697

    19. [19]

      (a) Jin, W.; Wu, M.; Xiong, Z.; Zhu, G. Chem. Commun. 2018, 54, 7924.
      (b) Wan, Y.; Shang, T.; Lu, Z.; Zhu, G. Org. Lett. 2019, 21, 4187.

    20. [20]

  • 加载中
    1. [1]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    2. [2]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    3. [3]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    4. [4]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    5. [5]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    6. [6]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    9. [9]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    10. [10]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    11. [11]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    12. [12]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    13. [13]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . Efficient adsorption of hardness ions by a mordenite-loaded, nitrogen-doped porous carbon nanofiber cathode in capacitive deionization. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    14. [14]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    15. [15]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . Hollow AgPt@Pt core-shell cocatalyst with electron-rich Ptδ- shell for boosting selectivity of photocatalytic H2O2 production for faceted BiVO4. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    16. [16]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    17. [17]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    18. [18]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    19. [19]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    20. [20]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

Metrics
  • PDF Downloads(18)
  • Abstract views(1339)
  • HTML views(132)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return