Citation: Zhu Haiqian, Shang Tianbo, Lu Zenghui, Luo Fang, Zhu Gangguo. Visible-Light Photocatalytic Remote Halo-difluoroalkylation of Thioalkynes[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3410-3419. doi: 10.6023/cjoc202005066 shu

Visible-Light Photocatalytic Remote Halo-difluoroalkylation of Thioalkynes

  • Corresponding author: Zhu Gangguo, gangguo@zjnu.cn
  • Received Date: 24 May 2020
    Revised Date: 6 June 2020
    Available Online: 11 June 2020

    Fund Project: the Education Department of Zhejiang Province Y201942955Project supported by the National Natural Science Foundation of China (No. 21672191), the Natural Science Foundation of Zhejiang Province (No. LZ20B020002) and the Education Department of Zhejiang Province (No. Y201942955)the Natural Science Foundation of Zhejiang Province LZ20B020002the National Natural Science Foundation of China 21672191

Figures(4)

  • Fluoroalkylated alkenes are of significant importance in life sciences and functional materials. The fluoroalkylation of alkynes offers an efficient method for the synthesis of functionalized fluoroalkylated alkenes. However, the current methods are often limited to 1, 2-difunctionalization, while the remote fluoroalkylative difunctionalization of alkynes has been rarely developed. Herein, a novel visible-light-induced remote halo-difluoroalkylation of thioalkynes is realized with difluoroalkyl halides as the radical source, forming distally halogenated (Z)-fluoroalkylated alkenes in moderate to high yields with excellent regio-, stereo-, and site-selectivity. The notable features of this reaction include the mild reaction conditions, broad substrate scope, concurrent formation of three new chemical bonds, and a thermodynamically less stable (Z)-alkene, thus enabling it a highly attractive method for organic synthesis. It represents a new advance on the direct C-H bond halogenation. Preliminary mechanistic studies indicate a cascade radical process involving the heteroatom-induced β-fluoroalkylation of C-C triple bonds, intramolecular 1, 5-hydrogen atom transfer (1, 5-HAT), single electron transfer (SET) oxidation and halide addition.
  • 加载中
    1. [1]

      For selected reviews, see: (a) Purser, S.; Moore, P. R. Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
      (b) O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308.

    2. [2]

    3. [3]

      (a) Long, Z.-Y.; Chen, Q.-Y. J. Org. Chem. 1999, 64, 4775.
      (b) Huang, X.-T.; Chen, Q.-Y. J. Org. Chem. 2001, 66, 4651.
      (c) Ke, M.; Feng, Q.; Yang, K.; Song, Q. Org. Chem. Front. 2016, 3, 150.
      (d) Feng, X.; Wang, X.; Chen, H.; Tang, X.; Guo, M.; Zhao, W.; Wang, G. Org. Biomol. Chem. 2018, 16, 2841.
      (e) Li, K.-K.; Zhang, X.-X.; Chen, J.-C.; Gang, Y.; Yang, C.-H.; Zhang, K.-Y.; Zhou, Y.-Y.; Fan, B.-M. Org. Lett. 2019, 21, 9914.

    4. [4]

      (a) He, Y.-T.; Wang, Q.; Li, L.-H.; Liu, X.-Y.; Xu, P.-F.; Liang, Y.-M. Org. Lett. 2015, 17, 5188.
      (b) He, Y.-T.; Li, L.-H.; Wang, Q.; Wu, W.; Liang, Y.-M. Org. Lett. 2016, 18, 5158.
      (c) Wang, Q.; Zheng, L.; He, Y.-T.; Liang, Y.-M. Chem. Commun. 2017, 53, 2814.
      (d) Zhang, Y.; Zhang, J.; Hu, B.; Ji, M.; Ye, S.; Zhu, G. Org. Lett. 2018, 20, 2988.
      (e) Liang, J.-Q.; Huang, G.-Z; Peng, P.; Zhang, T.-Y.; Wu, J.-J.; Wu, F.-H. Adv. Synth. Catal. 2018, 360, 2221.

    5. [5]

      Zhang, B.-S.; Gao, L.-Y.; Zhang, Z.; Wen, Y.-H.; Liang, Y.-M. Chem. Commun. 2018, 54, 1185.  doi: 10.1039/C7CC09083H

    6. [6]

      Xiang, Y.; Li, Y.; Kuang, Y.; Wu, J. Chem.-Eur. J. 2017, 23, 1032.  doi: 10.1002/chem.201605336

    7. [7]

      (a) Wang, S.; Zhang, J.; Kong, L.; Tan, Z.; Bai, Y.; Zhu, G. Org. Lett. 2018, 20, 5631.
      (b) Guo, W.-H.; Zhao, H.-Y.; Luo, Z.-J.; Zhang, S.; Zhang, X. ACS Catal. 2019, 9, 38.

    8. [8]

      Li, Y.; Li, H.; Hu, J. Tetrahedron 2009, 65, 478.  doi: 10.1016/j.tet.2008.11.011

    9. [9]

      Xu, T.; Cheung, C. W.; Hu, X. Angew. Chem., Int. Ed. 2014, 53, 4910.  doi: 10.1002/anie.201402511

    10. [10]

      Zhong, J.-J.; Yang, C.; Chang, X.-Y.; Zou, C.; Lu, W.; Che, C.-M. Chem. Commun. 2017, 53, 8948.  doi: 10.1039/C7CC03823B

    11. [11]

      Li, G.; Cao, Y.-X.; Luo, C.-G.; Su, Y.-M.; Li, Y.; Lan, Q.; Wang, X.-S. Org. Lett. 2016, 18, 4806.  doi: 10.1021/acs.orglett.6b02216

    12. [12]

      Wu, G.; von Wangelin, A. J. V. Chem. Sci. 2018, 9, 1795.  doi: 10.1039/C7SC04916A

    13. [13]

      Shang, T.; Zhang, J.; Zhang, Y.; Zhang, F.; Li, X.-S.; Zhu, G. Org. Lett. 2020, 22, 3667.  doi: 10.1021/acs.orglett.0c01163

    14. [14]

      Xiong, Z.; Zhang, F.; Yu, Y.; Tan, Z.; Zhu, G. Org. Lett. 2020, 22, 4088.  doi: 10.1021/acs.orglett.0c01147

    15. [15]

      For selected reviews on photocatalysis, see: (a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
      (b) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.
      (c) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
      (d) Matsui, J. K.; Lang, S. B.; Heitz, D. R.; Molander, G. A. ACS Catal. 2017, 7, 2563.

    16. [16]

      For selected reports on remote C-H halogention, see: (a) Kundu, R.; Ball, Z. T. Org. Lett. 2010, 12, 2460.
      (b) Liu, T.; Myers, M. C.; Yu, J.-Q. Angew. Chem., Int. Ed. 2017, 56, 306.
      (c) Herron, A. N.; Liu, D.; Xia, G.; Yu, J.-Q. J. Am. Chem. Soc. 2020, 142, 2766.
      (d) Short, M. A.; Blackburn, J. M.; Roizen, J. L. Angew. Chem., Int. Ed. 2018, 57, 296.

    17. [17]

      (a) Yang, Z.; Chen, X.; Kong, W.; Xia, S.; Zheng, R.; Luo, F.; Zhu, G. Org. Biomol. Chem. 2013, 11, 2175.
      (b) Zhu, G.; Kong, W.; Feng, H.; Qian, Z. J. Org. Chem. 2014, 79, 1786.

    18. [18]

      Nie, X.; Cheng, C.; Zhu, G. Angew. Chem., Int. Ed. 2017, 56, 1898.  doi: 10.1002/anie.201611697

    19. [19]

      (a) Jin, W.; Wu, M.; Xiong, Z.; Zhu, G. Chem. Commun. 2018, 54, 7924.
      (b) Wan, Y.; Shang, T.; Lu, Z.; Zhu, G. Org. Lett. 2019, 21, 4187.

    20. [20]

  • 加载中
    1. [1]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    2. [2]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    3. [3]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    4. [4]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    5. [5]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    6. [6]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    7. [7]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    8. [8]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    9. [9]

      Qi Zhang Ziyu Liu Hongxia Tan Jun Tong Dazhen Xu . Research Progress on Direct Synthesis of β-Hydroxy Sulfones via Difunctionalization of Olefins. University Chemistry, 2025, 40(11): 199-209. doi: 10.12461/PKU.DXHX202412064

    10. [10]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    11. [11]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    12. [12]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    13. [13]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    14. [14]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    15. [15]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    16. [16]

      Xiaofei ZhangShanhao XuZhiyuan WangLong HeTiangcheng HuangYongming XuYucui BianYike LiHaijun ChenZhongjun Li . Surface doping of graphene into BiOCl for efficient photocatalytic amine coupling under visible light. Acta Physico-Chimica Sinica, 2026, 42(5): 100202-0. doi: 10.1016/j.actphy.2025.100202

    17. [17]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    18. [18]

      Xinyu XuJiale LuBo SuJiayi ChenXiong ChenSibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153

    19. [19]

      Zehui JIABin WENShuting ZHANGZhengliang ZHAOHongfei HANChuntao WANGCaimei FAN . Mechanism of carbon quantum dots-modified BiOCl/diatomite composites for ciprofloxacin degradation under visible light irradiation. Chinese Journal of Inorganic Chemistry, 2026, 42(2): 317-330. doi: 10.11862/CJIC.20250199

    20. [20]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

Metrics
  • PDF Downloads(19)
  • Abstract views(2147)
  • HTML views(167)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return